Одним из самых важных понятий в математике и ее приложениях является понятие функции,. Всюду, где есть величины, связанные так, что с изменением одних (аргументов) меняются другие (функции), мы имеем дело с функциональной зависимостью. Эта зависимость может задаваться по-разному - формулами, графиками, таблицами. Бывают случаи, когда зависимость нельзя выразить формулой. Например, температура воздуха меняется с течением времени, однако формулы, выражающей температуру воздуха в данный момент времени, нет (как легко жилось бы метеорологам, если бы такая формула была!). В некоторых случаях приходится довольствоваться графиком функции (например, самопищущий прибор термограф дает график температуры воздуха как функции времени) или только таблицей значений функции для некоторых значений аргумента.
Чаще всего, однако, для описания функций пользуются формулами. В школе изучают случаи, когда эти формулы сравнительно просты. Например, зависимость площади круга от его радиуса выражается формулой S = Пи*r2, тока от сопротивления - формулой 1=V/R и т. д.
Возникает вопрос: встречаются ли на практике зависимости, выражаемые с помощью более сложных функций, например многочленов высоких степеней, показательной, логарифмической и тригонометрических функций? Мы расскажем здесь о некоторых случаях, когда такие функции встречаются в задачах физики и техники.
2i.SU ©® 2015