2i.SU
Физика

Физика

Содержание раздела

Новости физики

Свет: остановка по требованию?

Чуть больше месяца назад средства массовой информации поразили воображение общественности небывалым известием - ученые остановили свет! Как же, со школьной скамьи мы помним, что максимальная возможная скорость - это скорость света в вакууме c = 300000 км/с (примерно). Также мы помним, что свет - это фотоны, частицы, не имеющие массы. Поэтому крайне затруднительно представить себе фотоны, словно по мановению волшебной палочки "зависшие" в воздухе (или в парах рубидия). Теперь, когда ажиотаж схлынул, самое время разобраться, как и для чего "остановили" свет.

Свет практически одновременно"остановили" сразу две группы, использовавшие схожие методики. Группа Лизы Хау [1] в качестве "рабочей среды" использовала ультрахолодные пары натрия (при температуре около микрокельвина - условия, прямо скажем, достаточно экзотические). Зато в группе Филлипса и Лукина [2] использовались пары рубидия, причем температуры были самые "рабоче-крестьянские" - 70 - 90 С. Мы будем поэтому говорить об экспериментах второй группы.

Импульс света (длина волны - 795 нм) длительностью от 10 до 30 мкс пропускался через пары рубидия (с концентрацией атомов 1011 - 1012 см-3), содержащиеся в кювете (длина кюветы - 4 см) при температуре 70 - 90 C (схема эксперимента изображена на рис.1c). В обычных условиях при подобных концентрациях атомов оптическая среда полностью непрозрачна для света с такой длиной волны из-за резонансного поглощения (это очень важный момент - эффект резонансный). Однако существует возможность сделать среду прозрачной, воздействуя на нее электромагнитным излучением (эффект фотоиндуцированной прозрачности). Более мощное "управляющее поле" (свет с правой циркулярной поляризацией) делает возможным распространение в среде на порядок более слабого "сигнального поля" (упоминавшийся выше импульс, свет с левой циркулярной поляризацией), скорость распространения "сигнального импульса" при этом существенно уменьшается. Управляющее и сигнальное поля связывают (рис.1a) через возбужденное состояние пару зеемановских подуровней (зеемановское расщепление вызвано самим электромагнитным полем), отличающихся магнитными квантовыми числами (0 и 2). Таким образом, электромагнитное поле "завязано" со спиновой подсистемой атомов рубидия.

Рис.1. (a) L-конфигурация: пара зеемановских подуровней, отличающиеся магнитными квантовыми числами (0 и 2), "завязана" через возбужденное состояние управляющим c и сигнальным s полями. (b) Эффект очень тонкий: расстояние между зеемановскими подуровнями - десятки килогерц, что демонстрируется уменьшением пропускания - "потерей прозрачноcти"- при приложении малого магнитного поля вследствие выхода из резонансных условий. (с) Схема эксперимента; можно видеть, что кювета (cell) с парами рубидия заэкранирована, чтобы избежать воздействия на систему посторонних магнитных полей.

Необходимо сделать отступление. Групповая скорость распространения электромагнитных волн может быть отлична от c - этот факт вряд ли может кого-то удивить: в среде с показателем преломления n групповая скорость равна c/n. На самом деле n не является константой, показатель преломления зависит от энергии (частоты w ) фотона, поэтому правильнее писать n(w ). Очевидно, возможна ситуация, когда энергия кванта близка или совпадает с какой-либо особенностью энергетического спектра среды (будь-то расстояние между уровнями энергии атома, как в описываемых экспериментах, или возбуждения среды в твердом теле - экситоны, фононы, магноны). В этом случае уже нельзя представлять дело так, будто имеют место отдельно фотоны и отдельно возбуждения среды. В физике твердого тела уже давно известно, что в такой ситуации реализуется смешанное состояние, называемое поляритонным, - отчасти электромагнитное поле (фотоны), отчасти возбуждения среды. Показатель преломления в районе подобной особенности может претерпевать существенные изменения. Схожий резонансный эффект, как уже подчеркивалось, и имел место в эксперименте американских ученых. Примерно за год до успешно осуществленного эксперимента Флейшхауер и Лукин провели теоретические расчеты и показали [3], что при распространении света соответствующей частоты в атомных парах в режиме фотоиндуцированной прозрачности возникает связанное состояние электромагнитного поля и коллективных спиновых возбуждений атомов - "темный поляритон" (число фотонов в сигнальном импульсе должно быть при этом существенно меньше числа атомов в ячейке). Причем групповая скорость распространения сигнального импульса зависит от величины управляющего поля. Поэтому, меняя величину управляющего поля, можно изменять свойства (скорость и относительную долю электромагнитного поля и спиновых возбуждений) "темного поляритона". В частности, адиабатически медленно выключив управляющее поле, можно остановить поляритон.

Рис.2. "Хранение света".

Свет с левой циркулярной поляризацией, регистрируемый на выходе из кюветы (жирная линия). Пунктирная линия обозначает управляющее поле. Когда часть импульса (I) уже покинула кювету, управляющее поле выключают и из кюветы ничего не выходит до тех пор, пока управляющее поле не включат вновь. Тогда выходит "замороженная" часть импульса (II). Время везде указано в микросекундах.

Собственно, дальнейшее было делом техники. Групповая скорость света в среде уменьшалась более чем на пять порядков - до 1 км/c (cам по себе такой результат не является рекордным, два года назад Лизе Хау и др. [4] удалось уменьшить групповую скорость света до 17 м/c, т.е. более чем в десять миллионов раз (!)). Пока сигнальный импульс распространялся в кювете, исследователи адиабатически медленно (3 мкс) выключали управляющее поле, "замораживая" часть импульса в кювете (часть успевала выйти из кюветы до выключения управляющего поля). Поляритонное состояние не разрушалось, а полностью переходило в спиновые возбуждения атомов. Т.е. в это время в кювете не оставалось никаких фотонов - ВСЯ энергия электромагнитного поля преобразовывалась в коллективные возбуждения среды. Ключевой момент состоит в том, что это преобразование происходило КОГЕРЕНТНО и было ОБРАТИМЫМ. Именно когерентность и обратимость преобразования и дали повод говорить об "остановке света": фотоны, "возвращенные к жизни" адиабатически медленным включением управляющего поля, были идентичны фотонам, вошедшим в кювету - они "помнили" свое состояние до "остановки" (выходил свет с левой циркулярной поляризацией). Время "хранения света" в парах рубидия (рис.2) лимитируется характерным временем релаксации атомного магнитного момента вследствие столкновения со стенками кюветы. Максимальное достинутое время "удержания света" - 0.5 мс (большая величина по меркам оптики).

Настала пора, наконец, ответить на сакраментальный вопрос - для чего это все нужно? В настоящее время бурно развивается новое направление исследований, связанное с квантовыми вычислениями и, соответственно, "квантовыми вычислителями" - квантовыми компьютерами. Слово "квантовый" означает здесь, что принципиальным является квантовомеханический характер поведения системы. Квантовые компьютеры должны дать гигантский выигрыш в скорости вычислений по сравнению с обычными, классическими компьютерами. Для создания квантовых компьютеров необходимо, чтобы при переносе, записи, хранении и считывании информации не разрушалось квантовое состояние системы (идет "борьба за когерентность"). Фотоны являются наиболее быстрыми и удобными носителями информации, однако проблема состоит в том, чтобы научиться "неразрушающим" образом локализовать и сохранять их. И описанные выше работы дают ключ к решению этой проблемы. Был, кстати, такой вариант экспериментов в группе Лизы Хау - "хранящийся" импульс света высвобождался ... по частям: управляющее поле включалось на небольшой промежуток времени, а затем снова выключалось. Таким образом можно было вывести импульс из кюветы в несколько приемов. По существу происходило неоднократное (и не нарушающее состояние системы) считывание хранящейся информации.

перейти к началу страницы


2i.SU ©R 2015 Яндекс.Метрика Рейтинг@Mail.ruРейтинг@Mail.ru