Римляне называли нашу спутницу Луной, греки - Селеной.
Луна, конечно, была известна с доисторических времен. Это второй самый яркий объект в небе после Солнца. Поскольку Луна обращается по орбите вокруг Земли раз в месяц, угол между Землей, Луной и Солнцем изменяется; мы наблюдаем это явление как цикл Лунных фаз. Период времени между последовательными новыми лунами составляет 29.5 дней (709 часов).
Благодаря ее размеру и составу Луну иногда относят к планетам земной группы наряду с Меркурием, Венерой, Землей и Марсом.
Впервые Луну посетил Советский космический корабль Луна - 2 в 1959 году. Это единственное неземной тело, на котором побывал человек. Первая посадка произошла 20 июля 1969 года; последняя - в декабре 1972 года. Луна также единственое небесное тело, образцы которого были доставлены на Землю.
Гравитационные силы между Землей и Луной вызывают некоторые интересные эффекты. Наиболее очевидный из них - морские приливы и отливы. Гравитационное притяжение Луны более сильное на той стороне Земли, которая поветнута к Луне, и более слабое на противоположной стороне. Поэтому поверхность Земли, и особенно океаны, вытягиваются по направлению к Луне. Если бы мы взглянули на Землю со стороны, мы увидели бы две выпуклости, и обе они направлены в сторону Луны, но находятся на противоположных сторонах Земли. Этот эффект намного более силен в океанской воде, чем в твердой коре, так что выпуклость воды больше. А так как Земля вращается намного быстрее, чем Луна перемещается по своей орбите, перемещение выпуклостей вокруг Земли один раз за день дает две высших точки прилива в день.
Хотя Луна и вращается вокруг своей оси, она всегда обращена к Земле одной и той же стороной. Дело в том, что Луна совершает один оборот вокруг своей оси за то же самое время (27.3 суток), что и один оборот вокруг Земли. А поскольку направление обоих вращений совпадает, противоположную ее сторону с Земли увидеть невозможно.
Впервые астрономам удалось заглянуть на обратную сторону Луны в 1959 г., когда советская станция "Луна-3" пролетела над ней и сфотографировала невидимую с Земли часть ее поверхности. Обратная сторона Луны представляет собой идеальное место для астрономической обсерватории. Размещенным здесь оптическим телескопам не пришлось бы пробиваться сквозь плотную земную атмосферу. А для радиотелескопов Луна послужила бы естественным щитом из твердых горных пород толщиной 3500 км., который надежно прикрыл бы их от любых радиопомех с Земли.
Толщина коры Луны в среднем составляет 68 км, изменяясь от 0 км под лунным морем Crisium до 107 км в северной части кратера Королева на обратной стороне. Под корой находится мантия и, возможно, малое ядро (радиусом приблизительно 340 км и массой, составляющей 2% массы Луны). В отличие от мантии Земли мантия Луны только частично расплавленная. Любопытно, что центр масс Луны располагается примерно в 2 км от геометрического центра в направлении к Земле. На той стороне, которая повернута к Земле, кора более тонкая.
Поверность Луны можно разделить на два типа: очень старая горная местность с большим количеством вулканов и относительно гладкие и более молодые лунные моря. Лунные моря, которые составляют приблизительно 16% всей поверхности Луны, - это огромные кратеры, возникшие в результате столкновений с небесными телами, которые были позже затоплены жидкой лавой. Большая часть поверхности покрыта реголитом - смесью тонкой пыли и скалистых обломков, пролученных из столкновений с метеорами. По непонятной причине лунные моря сконцентрированы на обращенной к нам стороне.
Большинство кратеров на обращенной к нам стороне названо по имени знаменитых людей в истории науки, таких как Тихо Браге, Коперник и Птолемей. Особенности ландшафта на обратной стороне имеют более современные названия типа Аполлон, Гагарин и Королев - в основном это русские названия, так как первые снимки были сделаны Советским кораблем Луна-3. В дополнение к этим особенностям на обратной стороне Луны расположен огромный бассейн кратеров величиной 2250 км в диаметре и 12 км глубиной - это самый большой бассейн, появившийся в результате столкновения, в Солнечной системе, и Orientale в западной части видимой стороны (его можно видеть с Земли; на снимке справа - в центре), который является отличным примером много-кольцевого кратера.
До того, как Аполлон собрал образцы, ученые ничего не знали о том, кoгда и как образовалась Луна. Было три принципиальных теории: Луна и Земля сформировались в одно и то же время из Солнечной Туманности; Луна откололась от Земли; Луна сформировалась в другом месте и впоследствии была захвачена Землей. Но новая и детальная информация, полученная путем детального изучения образцов с Луны, привела к следующей теории: Земля столкнулась с очень большим объектом (столь же большим, как Марс, или даже больше) и Луна сформировалась из выбитого этим столкновением вещества. Есть еще детали, которые требуют доработки, но именно эта теория столкновения на сегодняшний день является широко принятой.
Луна не имеет магнитного поля. Но некоторые из горных пород на ее поверхности проявляют остаточный магнетизм, что указывает на то, что, возможно, в ранней исторри у Луны было магнитное поле.
Не имеющая ни атмосферы, ни магнитного поля, поверхность Луны подвержена непосредственному воздействию солнечного ветра. В течение 4 миллиардов лет водородные ионы из солнечного ветра внедрялись в реголит Луны. Таким образом, образцы реголита, доставленные Аполлоном, оказались очень ценными для исследования солнечного ветра. Этот лунный водород также может быть использован когда-нибудь как ракетное топливо
Как мы уже говорили, на Луне невооруженным глазом можно видеть темные пятна. В бинокль, а еще лучше в телескоп очертания их выступают более отчетливо. Это обширные равнины на лунной поверхности. Первые наблюдатели, рассматривавшие Луну в телескоп, приняли их за водоемы и назвали морями. Но на Луне нет ни воды, ни льда. Если когда-нибудь они там и были, то давно уже испарились и улетучились в пространство. Объясняется это тем, что сила тяжести на Луне в 6 раз меньше, чем на Земле. Луна не могла долгое время удерживать около себя сколько-нибудь значительное количество паров воды и газов.
В том, что на Луне нет заметной атмосферы, можно убедиться, наблюдая, как внезапно, без всякого потускнения, исчезает звезда, когда ее закрывает, двигаясь по небу, Луна. Тени гор на Луне резко очерчены.
Так как на Луне нет атмосферы, то не может быть на ней и ветра. Там постоянно безоблачное черное небо, на котором и при ярком Солнце блистают звезды. Голубую окраску небу на Земле дает воздух. Рассеивая солнечные лучи, он мешает нам видеть звезды днем, так как делает фон всего небосвода ярче, чем звезды.
Благодаря отсутствию атмосферы палящие лучи Солнца в течение лунного дня могут поднимать температуру поверхности Луны до плюс 120°; зато после захода Солнца температура быстро понижается и доходит ночью до минус 160°.
Так как на Луне нет ни воды, ни воздуха, ее поверхность не размывается и не выветривается. Различные неровности на лунной поверхности - ее горы и впадины - лучше всего видны около первой и последней четверти, когда косо падающие солнечные лучи создают там удлиненные тени. По этим теням ученые измерили высоту лунных гор: некоторые из них достигают 7000 м.
Много дают для изучения поверхности Луны фотоснимки, полученные с большим увеличением. На них можно увидеть широкую темноватую равнину, которую назвали Морем дождей, а по краям ее - цепи гор и отдельные кольцевые горы. Другая часть поверхности Луны сплошь покрыта кольцевыми горами и кратерами самых разнообразных размеров. Диаметр наибольших из них достигает 200 км.
Но как могли образоваться большие кратеры или громадные равнины, окаймленные цепями гор? Этот вопрос наука пока еще окончательно не решила. Русский геолог А. П. Павлов полагал, что некогда горячие массы прорывались в отдельных местах из недр Луны на поверхность и образовывали расплавленные озера и моря. Вулканическая магма постепенно застывала, нагромождая у краев затвердевшие скалы. В середине же этих пространств поверхность несколько опускалась, образуя обширные равнины.
Некоторые ученые считают, что кратеры могли образоваться в результате падения на Луну огромных метеоритов.
Кроме обширных равнин, горных хребтов и многочисленных кольцевых гор, покрывающих поверхность, на фотографии Луны можно видеть трещины, складки и особые светлые полосы, лучеобразно расходящиеся от некоторых больших кратеров. Почти всем крупным формам рельефа на Луне даны различные названия: для горных хребтов взяты названия земных (Кавказ, Альпы, Апеннины и т. п.), для кратеров - имена знаменитых ученых ( Коперника, Кеплера, Тихо и др. )
По геометрической форме Луна близка к шару, средний радиус которого 1738 км, что примерно в 3,68 раз меньше, чем радиус Земли. Объем Луны 2,199*1010 км3, площадь ее поверхности 3,769*107 км2. Масса Луны, равная 7,35*1022 кг, составляет 1/81,3 массы Земли. Угловой радиус видимого с Земли диска Луны (при среднем расстоянии между ними) равен 31'05".
На Луне даже невооруженным глазом различимы темные, относительно ровные участки, называемые "морями", и разделяющие их более светлые - "материки", или "континенты". На долю последних приходится немногим более 83% площади поверхности Луны. Поверхность "материков" гориста, ее уровень выше, чем у "морей", и разность средних высот достигает 2,3 км. Уровень в круговых "морях" в районах несколько повышенной плотности лунной породы (в так называемых масконах) обычно более чем на километр ниже, чем у "морей" неправильной формы и уступает 4 км максимальной высоте "материков". Поверхность Луны покрыта большим числом кольцевых структур - кольцевыми горами (цирками) и кратерами ударного (метеоритного) происхождения. Видимые на поверхности линейные структуры - борозды, разломы и складки - являются свидетельствами тектонических процессов на Луне.
Луна движется вокруг Земли по почти эллиптической орбите со средней линейной скоростью 3683 км/ч (1,02 км/с). Минимальное расстояние от Земли 363300 км, максимальное - 405500 км. Плоскость орбиты Луны наклонена к плоскости эклиптики на угол 5°08'43". Период орбитального движения (сидерический период обращения) 27,32166 земных суток, что совпадает с периодом осевого обращения Луны, благодаря этому Луна всегда обращена к Земле одним и тем же полушарием (так называемая видимая сторона Луны). Из-за того что движение Луны по орбите не является равномерным, а также из-за наклона плоскости экватора к плоскости ее орбиты, с Земли можно наблюдать несколько более чем половину (59%) поверхности Луны.
Период обращения Луны относительно Солнца (синодический период) составляет 29,53 суток, так что лунный день и лунная ночь длятся почти по 15 суток. В течение лунного дня поверхность Луны нагревается, а ночью охлаждается; при этом температура на поверхности Луны меняется от 400 до 100 К.
Плотность лунных пород составляет в среднем 3,343 г/см3, что заметно уступает средней плотности для Земли (5,518 г/см3). Это различие связано главным образом с тем, что уплотнение вещества с глубиной проявляется на Земле значительно заметнее, чем на Луне. Имеются и различия в минералогическом составе лунных и земных пород: содержание оксидов железа в лунных базальтах на 25%, а титана - на 13% выше, чем в земных. "Морские" базальты на Луне отличаются повышенным содержанием оксидов алюминия и кальция и относительно более высокой плотностью, что связывают с их глубинным происхождением.
Для исследования строения Луны использовались сейсмические методы. В настоящее время картина этого строения разработана довольно детально. Принято считать, что недра Луны можно разделить на пять слоев.
Поверхностный слой - лунная кора (ее толщина меняется от 60 км на видимой с Земли половине Луны до 100 км - на невидимой) - имеет состав, близкий к составу "материков". Под корой располагается верхняя мантия - слой толщиной около 250 км. Еще глубже - средняя мантия толщиной порядка 500 км; полагают, что именно в этом слое в результате частичного выплавления формировались "морские" базальты. На глубинах порядка 600-800 км располагаются глубокофокусные лунные сейсмические очаги. Нужно, однако, отметить, что естественная сейсмическая активность на Луне невелика.
На глубине около 800 км кончается литосфера (твердая оболочка) и начинается лунная астеносфера - расплавленный слой, в котором, как и в любой жидкости, могут распространяться только продольные сейсмические волны. Температура верхней части астеносферы порядка 1200 К.
На глубине 1380-1570 км происходит резкое изменение скорости продольных волн - здесь проходит граница (довольно размытая) пятой зоны - ядра Луны. Предположительно, это относительно небольшое ядро (на его долю приходится не более 1% массы Луны) состоит из расплавленного сульфида железа.
Поверхностный довольно рыхлый слой Луны состоит из пород, раздробленных постоянным потоком падающих на нее твердых тел - от микрометеоритов и пыли до крупных частиц - многотонных метеоритов и астероидов.
Над поверхностью Луны газовая атмосфера как таковая отсутствует, так как не может удерживаться Луной вследствие ее малой массы. В результате даже легчайшие атомы при средних тепловых скоростях способны преодолевать притяжение Луны. Поэтому плотность газа над Луной по крайней мере на 12 порядков меньше плотности приземной атмосферы (хотя и заметно выше плотности межзвездного газа).
Наиболее тщательно исследовалось гравитационное поле Луны, что объясняется не только потребностями космонавтики, но и дает важную информацию об особенностях строения Луны. Эти исследования выявили нецентральность гравитационного поля, обусловленную неоднородностью плотности недр. Ускорение силы тяжести на поверхности Луны составило 1,623 м/с2, то есть в 6 раз меньше, чем на Земле.
Магнитное поле Луны по имеющимся оценкам является весьма слабым и составляет примерно 0,1% магнитного поля Земли, что соответствует напряженности магнитного поля, не превышающей 0,5 гамм. Электрическое поле у поверхности Луны не измерялось, но существуют теоретические указания на то, что из-за значительного приливного воздействия со стороны Земли внутри Луны должно произойти перераспределение электрических зарядов, приводящее к образованию над ее поверхностью электрического поля с напряженностью в некоторых точках порядка киловольта на метр.
Луна светит отраженным солнечным светом; визуальное сферическое альбедо равно 0,075, то есть Луна отражает всего 7,5% падающих на нее солнечных световых лучей. Отражение падающего от внешнего источника света довольно заметно преобладает в направлении к этому источнику; по этой причине Луна ярче всего в полнолуние. Собственное тепловое излучение Луны незначительно (соответствует температуре не выше 100 К).
Прежде чем учёные увидели лунные камни, у них имелись три теории происхождения Луны, но не было возможности доказать правильность какой-либо из них. Одни считали, что новообразованная Земля вращалась настолько быстро, что сбросила с себя часть вещества, ставшую затем Луной. Другие предполагали, что что Луна прилетела из глубин космоса и была захвачена силой земного тяготения. Третья теория состояла в том, что Земля и Луна образовались независимо, почти одновременно и примерно на одинаковом расстоянии от Солнца. Различия в химическом составе Земли и Луны указывают на то, что эти небесные тела вряд ли когда либо составляли одно целое.
Не так давно возникла четвёртая теория, которая и принята сейчас как наиболее правдоподобная. Эта гипотеза гигантского столкновения. Основная идея состоит в том, что, когда планеты, которые мы видим теперь, только ещё формировались, некое небесное тело величиной с Марс с силой врезалось в молодую Землю под скользящим углом. При этом более легкие вещества наружных слоёв Земли должны были бы оторваться от неё и разлететься в пространстве, образовав вокруг Земли кольцо из обломков, в то время как ядро Земли, состоящее из железа, сохранилось бы в целости. В конце концов это кольцо из обломков слиплось, образовав Луну. Теория гигантского столкновения объясняет, почему Земля содержит большое количество железа, а на Луне его почти нет. Кроме того, из вещества, которое должно было превратиться в Луну, в результате этого столкновения выделилось много различных газов - в частности кислород.
При хороших атмосферных условиях в обычный бинокль на лунном диске можно свободно различать кратеры диаметром 50 - 70 км.
В полнолуние хорошо видны лучевые системы и отдельные протяженные лучи.
Если воспользоваться телескопом с диаметром объектива 80 - 100 мм, то можно различить кратеры размером 10 - 15 км, а кратеры размером 50 - 60 км видны уже с подробностями: наличие центральной горки, наличие вторичных кратеров на дне и валу.
Качество изображения в первую очередь зависит от высоты Луны над горизонтом. У самого горизонта диск Луны настолько искажается турбуленцией, что детальные наблюдения невозможны. Наиболее удобно проводить наблюдения в течение нескольких дней, вслед за передвижением линии терминатора.
При среднем возрасте Луны около 3-х дней терминатор проходит через центральную часть Моря Кризисов. На поверхности этого кругового моря становятся заметными пологие валы, поскольку при низком расположении Солнца над горизонтом Луны эти образования отбрасывают длинные тени. Обращают на себя внимание окружающие Море Кризисов горы, отдельные пики которых видны за терминатором на фоне темной неосвещенной части диска. Чем выше вершина, тем ранее она освещается восходящим Солнцем и, следовательно, видна на большем расстоянии от терминатора.
Это время удобно для изучения структуры таких крупных кратеров, как Лангрен, Петавий, Фурнерий, характерных центральными горками.
В первой четверти близ терминатора область богата замечательными деталями лунного рельефа.
В северной части видна половина Моря Холода - отличающаяся внешним видом и яркостью от типичной морской поверхности. С юга к Морю Холода примыкают окружающие Море Дождей горы Альпы, рассеченные прямой трещиной длиной 170 км при ширине 10 км - Долиной Альп.
Южнее располагаются горы Кавказ и Апеннины, которые замыкают кольцо вокруг Моря Дождей с востока, отделяя его от Моря Ясности и от Моря Паров в юго-восточном направлении. Высота гор достигает 8 км.
Несколько южнее центра диска Луны выстроились цепочкой с севера на юг крупные кратеры Птолемей (146 км), Альфонс (124 км), Арзахель (92 км). Кратер Альфонс неоднократно был заподозрен в проявлении вулканической деятельности, а в 1958 году астроному Козыреву Н. А. удалось сфотографировать спектр газов, выходящих из кратера.
В последующие ночи появится кратер Платон, расположенный к северу от Моря Дождей, и примечательный темным дном, а южнее - кратер Коперник (90 км), у которого в фазе полнолуния обнаруживаются светлые лучи, простирающиеся радиально по пересеченной местности на сотни километров.
В южной части в Море Облаков виден сброс материковой поверхности - Прямая Стена высотой до 300 метров при длине более 100 км. На 12-й день после новолуния появляется кратер Кеплер (30 км) и кратер Аристарх (40 км) - наиболее яркий объект видимого полушария с лучами повышенной яркости. По-видимому, он является молодым кратером, а весь район носит явные следы проявления лунного вулканизма.
В последующие две ночи возможно ознакомиться с западной окраиной Океана Бурь, на поверхность которого в 1966 году впервые опустилась автоматическая станция "Луна-9", передавшая на Землю изображения лунного ландшафта.
Первые люди на Луне побывали в 1969 году, высадившись на поверхность Моря Спокойствия, установив там ряд приборов и взяв образцы грунта
Только что зашло Солнце. На фоне красноватой зари ярко вырисовывается узкий блестящий серп, горбом обращенный в сторону зашедшего Солнца. Недолго приходится им любоваться. Скоро и он опускается вслед за Солнцем под горизонт. При этом говорят: «Родилась новая Луна». На следующий день при заходе Солнца вы заметите, что серп стал шире, он виден выше над горизонтом и заходит уже не так рано. С каждым днем Луна как бы растет и в то же время отходит от Солнца все дальше и дальше влево. Через неделю Луна оказывается вечером на юге в виде полукруга с выпуклостью вправо. Тогда говорят: «Луна достигла фазы первой четверти».
В следующие дни Луна продолжает расти, становится больше полукруга и отодвигается дальше к востоку, пока еще через неделю не станет полным кругом, т. е. наступит полнолуние. В то время когда Солнце будет уходить под горизонт на западной стороне, с противоположной, восточной стороны начнет подниматься полная Луна. К утру оба светила как бы меняются местами: появление Солнца на востоке застает полную Луну заходящей на западе.
Дальше день за днем Луна всходит все позднее. Она становится все более урезанной, или ущербленной, но уже с правой стороны. Через неделю после полнолуния вы вечером не найдете на небе Луны. Она только около полуночи показывается на востоке из-за горизонта и опять в виде половины круга, но горбом направлена теперь влево. Это - последняя четверть. Утром можно увидеть с южной стороны полукруг Луны, обращенный горбом к восходящему Солнцу. Через несколько дней, только перед восходом Солнца, появляется из-за горизонта на востоке узкий серп Луны. А еще через неделю, после последней четверти, Луна совсем перестает быть видимой - наступает новолуние; потом она появится опять с левой стороны от Солнца: вечером на западе и горбом уже опять вправо.
Так изменяется вид Луны на небе каждые четыре недели, точнее - за период 29.5 суток. Это лунный, или синодический, месяц. Он послужил основой для составления календаря еще в древние времена. Такой лунный календарь сохранился у некоторых восточных народов и до настоящего времени.
Можно рассчитать, когда и как будет видна Луна - когда будут светлые и темные ночи, а когда вся ночь будет лунная, светлая. Это бывает иногда очень важно знать заранее.
Сделайте вечером в комнате такой опыт: возьмите мяч и лампу. Пусть мяч изображает Луну, ваша голова - Землю, а лампа, поставленная поодаль, - Солнце. Держите мяч в вытянутой руке, двигайте его вокруг себя и смотрите, как будет видна вам освещенная часть мяча. Так же будет видна Луна с Земли, вокруг которой Луна обращается.
Во время новолуния Луна находится между Землей и Солнцем и обращена к Земле неосвещенной стороной. В первую четверть, т. е. через четверть оборота Луны, к Земле обращена половина ее освещенной стороны. В полнолуние Луна находится в противоположной Солнцу стороне, а к Земле обращена вся освещенная сторона Луны, и мы видим ее полным кругом. В последнюю четверть снова мы видим с Земли половину освещенной стороны Луны. Теперь понятно, почему выпуклая сторона серпа Луны всегда обращена к Солнцу.
В ближайшие вечера после новолуния можно наблюдать, кроме яркого серпа, и не освещенную Солнцем, но слабо видимую часть Луны. Такое вление называют пепельным светом. Это - ночная поверхность Луны, освещаемая только отраженными от Земли солнечными лучами.
Таким образом, изменение фаз Луны объясняется двумя причинами: во-первых, Луна - темный, непрозрачный шар, освещаемый Солнцем, и, во-вторых, Луна обращается вокруг Земли.
Время обращения Луны вокруг Земли называется звездным месяцем и составляет 27.3 суток, т. е. меньше 29.5 суток, в течение которых происходит смена фаз Луны. Причиной этого является движение самой Земли.
Обращаясь вокруг Солнца, Земля увлекает за собой и свой спутник - Луну.
Пусть Луна будет в положении новолуния. Пока она сделает полный оборот за 27.3 суток, Земля вместе с Луной займет в это время иное положение по отношению к Солнцу: Луна еще не окажется между Землей и Солнцем. Для того чтобы наступило следующее новолуние, Луне надо продвинуться еще дальше и сделать больше полного оборота. На это ей требуется несколько больше двух суток. Вот причина различия между длительностью синодического и звездного (сидерического) месяцев.
В новолуние, когда Луна оказывается между Землей и Солнцем, она может закрыть его от нас, и тогда наступит солнечное затмение. В полнолуние Луна, находясь по другую сторону от Земли, может попасть в тень, отбрасываемую Землей, тогда произойдет лунное затмение. Затмения не происходят каждый месяц потому, что Луна обращается вокруг Земли в плоскости, не совпадающей с той плоскостью, в которой Земля обращается вокруг Солнца
Поскольку Луна довольно быстро перемещается относительно звезд вдоль эклиптики (за 1 час на величину диаметра своего диска), то временами она закрывает собой звезды, происходят так называемые покрытия звезд Луной.
Различают покрытия темным краем, светлым краем, а также открытия, когда звезда появляется из-за темного или светлого края Луны.
Наблюдения этих явлений дают ценный материал для определения радиуса Луны, уточнения теории движения Луны, определения долготы местности.
Покрытия звезд выглядят довольно эффектно, особенно темным краем, когда звезда светит, не меняя своего блеска, и внезапно происходит ее исчезновение, что объясняется отсутствием атмосферы на Луне. Само явление покрытия наблюдать несложно, трудности может вызвать предвычисление данных о покрытий - какая звезда и когда будет закрыта диском Луны.
Астрономический календарь (Переменная часть, выпускаемая ежегодно) публикует моменты покрытий звезд для ряда городов, используя которые можно интерполяцией вычислить данные для своего места.
При наблюдении необходимо за 15-20 минут навести телескоп на звезду, покрытие которой ожидается. Если телескоп имеет часовой механизм, то можно оторваться от окуляра и начать более внимательно смотреть за 3-5 минут до покрытия, в зависимости от точности предвычислений. Более длительное непрерывное слежение за звездой утомляет наблюдателя и сам момент покрытия может быть пропущен.
Момент исчезновения звезды следует отметить по хорошо выверенным часам, подав сигнал голосом: "Есть", а помощник в этот момент должен заметить показания часов; или включить секундомер и остановить его потом по сигналам точного времени или по показаниям часов. Наблюдения представляют ценность, если они проводятся регулярно и обеспечивается точность не хуже 0.2 - 0.3 секунд.
Через час после покрытия можно ожидать выхода звезды из-за Луны, но этот момент уловить гораздо труднее, так как неизвестно точно место появления звезд и наблюдателю трудно сосредоточиться на появлении ненаблюдаемого объекта. Впрочем, если открытие происходит не из-за освещенного края Луны, а из-за темного, то момент вспышки до того не существовавшей звезды улавливается легко.
При наблюдении покрытий целесообразно применять большие увеличения, доходящие до 2D(мм) с тем, чтобы за счет малого поля зрения вывести освещенную часть Луны за его пределы и сосредоточить внимание на самой звезде. За счет большого увеличения яркость фона неба уменьшается, так как собираемый объективом свет "размазывается" на большую площадь, а яркость звезды не изменяется, потому что звезда из-за своей удаленности по-прежнему остается точечным объектом.
При наблюдении открытий приходится применять меньшее увеличение с тем, чтобы можно было видеть значительную часть лунного края, из-за которого должна появиться звезда. В противном случае легко ошибиться и вообще не увидеть появления. Наблюдения легко удаются при ранних и поздних фазах, но затруднены во время полнолуния из-за большой яркости Луны и сильной засветки неба, особенно при плохой прозрачности атмосферы
При рассмотрении Луны в бинокль или даже невооруженным глазом на ее поверхности видны темные пятна и всегда почти на одних и тех же местах, одинаково удаленных от краев лунного диска. Значит, Луна обращена к Земле постоянно одной и той же стороной. Это происходит потому, что Луна вращается вокруг своей оси как раз с тем же периодом, с каким она обращается вокруг Земли. Сделайте такой опыт: обойдите вокруг стола, оставаясь обращенными к нему все время лицом. Вы по очереди увидите все стены комнаты. Результат будет тот же, как если бы вы сделали полный поворот вокруг себя, стоя на месте.
Вследствие вращения Луны вокруг своей оси разные участки ее поверхности бывают обращены к Солнцу в разное время. На ней происходит смена дня и ночи. Лунные сутки в 29.5 раза длиннее земных. Почти 15 наших суток на Луне длится день и столько же времени - ночь
Луна - спутник Земли. Это единственное крупное небесное тело, которое обращается вокруг Земли.
Луна гораздо ближе к Земле, чем другие небесные тела. Расстояние до Луны измерили точно, воспользовавшись тем же способом, каким на Земле измеряют расстояние до видимых предметов, к которым нельзя подойти.
Луна движется вокруг Земли не по окружности, а по эллипсу, поэтому ее расстояние от Земли не остается постоянным. В среднем оно составляет 384400 км.
Зная расстояние до Луны, ученые вычислили ее действительные размеры. Диаметр Луны составляет 3476 км, т. е. немногим более четверти диаметра Земли. Площадь Луны несколько меньше территории Азии. По объему Луна почти в 50 раз меньше Земли
Аналогично движению Солнца, Луна также перемещается относительно звезд, но по более сложной траектории.
Движение Луны складывается из двух движений - вращение Луны вокруг Земли и движение вместе с Землей вокруг Солнца, при этом движение Луны, как и Солнца, происходит с запада на восток, в сторону, противоположную суточному движению.
Обращение вокруг Земли в течение лунного месяца вызывает перемещение по зодиакальным созвездиям с месячным периодом (29.5 суток). Но за этот месяц Солнце само смещается по эклиптике на 30 град и переходит в другое созвездие. Так что через месяц Луна заканчивает свой круг в другом зодиакальном созвездии и отсюда начинается новый круг по созвездиям.
За это время Луна проходит все фазы: от новолуния (диск Луны находится в соединении с Солнцем), первой четверти (направления Земля - Луна и Земля - Солнце составляют прямой угол), полнолуния (Луна находится в стороне, противоположной Солнцу), последней четверти (аналог первой четверти) и вновь до новолуния, соединения с Солнцем.
Совершая полный круг за месяц, Луна в течение суток смещается примерно на 13 град, и уже за час можно заметить относительно яркой звезды или планеты, что Луна сместилась на величину своего диаметра, то есть на 0.5 град. Луна за месяц в точности повторяла бы путь Солнца по эклиптике за год, если бы плоскость ее орбиты совпадала с плоскостью земной орбиты. Но так как эти плоскости наклонены друг к другу под углом 5 град, то траектория Луны отклоняется от эклиптики также примерно на 5 град, то есть, в максимальной кульминации высота Луны будет на 5 град выше, чем Солнца (для Ростова-на-Дону hmax = 90 град- fi +23.5 град+5 град = 71 град ), а минимальная высота Луны в кульминации может быть h = 14 град
Таким образом, Солнце совершает полный оборот по эклиптике за год (результат вращения Земли вокруг Солнца), а Луна за это время совершает около 12 прохождений по эклиптике (12 оборотов вокруг Земли за время одного оборота Земли вокруг Солнца).
При каждом прохождении вдоль эклиптики склонение Луны может меняться от +28.5 град до -28.5 град (результат сложения наклона земной оси 23.5 град и наклона орбиты Луны 5 град). При этом новолуние начинается в точке с координатами, соответствующими положению Солнца в этот день, а полнолуние будет происходить в точке эклиптики, противостоящей на 180 град. В результате: новолуния в летние месяцы происходят в точке с большим положительным склонением и в это время Луна могла бы наблюдаться при кульминации высоко над горизонтом, но по мере выхода из-за Солнца склонение уменьшается, и Луна обычно наблюдается низко над горизонтом. В момент летнего полнолуния Луна имеет максимальное отрицательное склонение и, соответственно, кульминирует на минимальной высоте над горизонтом. В зимние месяцы, наоборот, новолуние происходит в южной части эклиптики, а полнолуние - при максимальном положительном склонении, и в зимние ясные ночи полная Луна наблюдается близко к зенитной области неба.
Для ориентировочного представления о времени восхода Луны на следующий день следует помнить, что так как Луна за сутки смещается вдоль эклиптики на 13 град, то ее восход наступит примерно на 1 час позже (точнее на 40 минут, так как за один час небо поворачивается на 15°)
Гравитационное воздействие Земли на Луну и наоборот довольно велико. Разные части, скажем, Земли по разному подвергаются притяжению Луны: сторона, повернутая к Луне, - в большей степени, обратная сторона - в меньшей, так как дальше находится от нашего спутника. В результате, разные части Земли стремятся прийти в движение в направлении Луны с разными скоростями. Поверхность, обращенная к Луне, вздувается, центр Земли смещается меньше, а противоположная поверхность вовсе отстает, и с этой стороны тоже образуется вздутие - из-за "отставания". Земная кора деформируется неохотно, на суше приливных сил мы не замечаем. А вот про изменение уровня моря, про приливы и отливы, слышали все. Вода поддается воздействию Луны, образуя приливные горбы на двух проитвоположных сторонах планеты. Вращаясь, Земля "подставляет" Луне разные свои стороны, и приливной горб перемещается по поверхности. Такие деформации земной коры вызывают внутреннее трение, которое тормозит вращение нашей планеты. Раньше она вращалась гораздо быстрее. Луна еще больше подвергнута влиянию приливных сил, ведь Земля гораздо массивнее. Скорость вращения Луны настолько замедлилась, что она покорно повернулась к нашей планете одной стороной, и приливной горб не бежит более по лунной поверхности. Воздействие этих двух тел друг на друга приведет в отдаленном будущем к тому, что и Земля, в конце концов, повернется к Луне какой-то одной стороной. Кроме того, приливные силы, вызванные близостью Земли, а также влиянием Солнца, тормозят и движение Луны по орбите вокруг Земли. Замедление сопровождается удалением Луны от центра Земли. В итоге, это может привести к потере Луны...
Небольшие части обратной стороны Луны бывают видны из-за так называемых либраций, колебаний видимого лунного диска. Это наблюдаемое явление происходит из-за того, что лунная орбита не круг, а эллипс, двигаясь по нему, Луна нам показывает разные части своей обратной стороны. Всего же с Земли можно наблюдать чуть меньше 60% лунной поверхности. На иллюстрации, демонстрирующей смену лунных фаз (выше, слева), Вы сможете заметить и либрации лунного диска. По тем же причинам с Луны Земля видна не отовсюду, а лишь со стороны, обращенной к планете, и иногда с тех участков, которые с Земли видны только благодаря либрациям. Земля (вообразите) неподвижно весит над горизонтом: ни закатов, ни восходов. Только либрационные небольшие и медленные перемещения из стороны в сторону. Для каждой точки поверхности Луны - свое положение Земли на небе. Но вернемся на Землю и посмотрим на Луну
Уже невооруженным глазом на Луне видны светлые и темные (синие или голубые) области. В прошлом, люди считали, что синие участки - это лунные моря. Это название, по традиции, так за ними и осталось. На самом деле, это твердая поверхность, которую с морями роднит, разве что, то обстоятельство, что раньше здесь были моря извергшейся лавы. Но таких мощных извержений на Луне нет уже несколько миллиардов лет. Об этом говорят образцы лунных горных пород, доставленных на Землю людьми и автоматическими станциями
Даже в небольшой бинокль на Луне видны кратеры - следы падения метеоритов. Лунная поверхность вся покрыта кратерам разного размера - от сотен километров до миллиметров. Сейчас уже выпущены промышленностью и глобусы, и подробные карты Луны, пользуясь которыми, можно производить наблюдения в телескоп, отыскивая те или иные участки поверхности. Интересующий вас объект будет лучше заметен, если наблюдать его вблизи границы освещенного диска (терминатора). Тени будут четче вырисовывать неровности рельефа. В районе терминатора на Луне идут заход или восход Солнца. А теперь сами вспомните, когда на Земле Вы отбрасываете самую длинную тень при свете Солнца
Луна вращается вокруг Земли. При разных положениях относительно друг друга Солнца, Земли и Луны мы по-разному видим освещенный диск нашего спутника. Часть освещенного диска называется фазой Луны. Принято выделять особо фазы новолуния (диск полностью темный), первой четверти(растущий лунный серп выглядит в форме полудиска), полнолуния (диск освещен полностью) и последней четверти (освещено вновь ровно полдиска, только с другой стороны, нежели в фазе первой четверти). Вообще, фазу принято выражать в десятичных и сотых долях единицы, причем новолунию будет соответствовать фаза 0, полнолунию - 1, первой и последней четвертям - 0,5. Для начинающих очень трудно бывает отличить растущий от новолуния к полнолунию месяц от убывающего к новолунию от полнолуния. В северном полушарии пользуются известным приемом: если к лунному серпу можно так приставить воображаемую палочку, чтобы получилась буква "Р" (растущий), то месяц растет, если же месяц выглядит, как буква "С" (старый), то он убывает. Период полной смены всех лунных фаз от новолуния до новолуния называется синодическим периодом обращения Луны или синодическим месяцем, который равен примерно 29,5 дням. Именно за это время Луна проходит по своей орбите такой путь, что дважды успевает пройти через одну и ту же фазу. Полный оборот Луны вокруг Земли относительно звезд называется сидерическим периодом обращения или сидерическим месяцем, он длится 27,3 дня. Если в какой-то момент времени провести воображаемую линию через центры Земли и Луны и продолжить ее к звездам, то на небесной сфере конец этой линии укажет на некоторую точку. При движении Луны по орбите меняются и эти точки. Повторно линия упрется в то же место как раз через сидерический месяц. (В этом мысленном эксперименте не учтены некоторые особенности движения Луны по орбите, о которых сказано ниже. На самом деле, описанный опыт не удался бы: через сидерический месяц линия прошла бы выше или ниже и немного в сторону). Аналогично определяются синодические и сидерические периоды обращения для других небесных тел. Сидерический и синодический месяц не совпадают потому, что Земля и Луна движутся вокруг Солнца, и для повторения одного и того же взаимного расположения Луны, Земли и Солнца Луне необходимо пройти по своей орбите чуть больше одного витка вокруг Земли. Это все нетрудно себе точнее прояснить, сделав простейший чертеж, в котором нужно учесть, что Луна движется вокруг Земли в том же направлении, что Земля вокруг Солнца
Луна 22 декабря 1999-го года, это последнее полнолуние, означенное годом, начинающимся с 19.. . Луна в тот момент находилась вблизи самой близкой к Земле точке орбиты и была больше обычного по видимым размерам. Снимок получен Робом Гендлером
Луна вращается вокруг Земли. Для нас это проявляется не только в видимой смене фаз. Луна быстро перемещается на фоне звезд, в день примерно на 12,5°. Каждый новый день наш спутник появляется над горизонтом на 49 минут позже. Из-за этого в новолуние Луна достигает верхней кульминации в полдень, в фазе первой четверти - в 6 вечера, в полнолуние - в полночь, а серп последней четверти - в 6 утра. Растущий молодой лунный серп мы видим вскоре после захода дневного светила на западе. Убывающий старый месяц виден утром, перед восходом Солнца на востоке. Заметьте при своих наблюдениях, если Вам этого делать не приходилось, что месяц всегда обращен выпуклостью к Солнцу. Потрудитесь сами это объяснить
Период обращения Луны вокруг Земли в точности равен периоду обращения спутника вокруг собственной оси, из-за чего Луна повернута к Земле всегда одной стороной. Физическими причинами такого положения вещей являются приливные силы
Одним из интереснейших видов астрономических явлений, связанных с Луной, являются затмения
Затмения бывают солнечными и лунными: в первом случае, Луна загораживает собою Солнце, а во втором - земная тень скрывает Луну. Затмения случаются в те моменты, когда Солнце, Земля и Луна Вы страиваются в одну линии в своем движении. Нетрудно сообразить, что это бывает либо в полнолуние, либо в новолуние
Лунные затмения происходили бы каждый раз в полнолуние, а солнечные - в новолуние, если бы не одна особенность движения Луны. Плоскость ее орбиты наклонена к плоскости околосолнечной орбиты Земли под небольшим углом в 5°. Уже этого достаточно, чтобы в новолуние Луна проходила чуть Вы ше или ниже Солнца, а в полнолуние земная тень не попадала на лунный диск. Только тогда, когда полнолуние или новолуние приходится на моменты пересечения Луной плоскости земной орбиты, т.е. когда действительно все три тела, участвующие в явлении, Вы страиваются в линию, происходят затмения. Например, в ситуации, изображенной на рисунке, затмения не произойдет. Точки пересечения лунной орбиты с плоскостью орбиты Земли не лежат на одной линии с Солнцем (эти две точки орбиты называются узлами). В добавление ко всему описанному, ориентация орбиты нашего спутника непостоянна, как Луна. Плоскость поворачивается или, как говорят, прецессирует. В результате, еще в древности был Вы явлен далеко не очевидный временной промежуток, через который последовательность всех затмений повторяется. Этот временной интервал называют саросом. Длительность сароса 18 с небольшим лет (6585,32 суток). Зная об этом, мы можем сказать, что через сарос можно ожидать наблюдаемое, скажем, сегодня полное солнечное затмение, но мы не можем, зная лишь про сарос, утверждать, что оно будет полным, а также не в силах предсказать, где на Земле его можно будет увидеть. В течение сароса происходит 43 солнечных и 28 лунных затмений. В наше время, знания человека о затмениях значительно превосходят умудренность древних. Затмения и условия их протекания высчитываются с высокой точностью на много лет вперед
Вообще, мы имеем дело с поразительным природным совпадением: Луна в 400 раз меньше Солнца, но во столько же раз ближе него к Земле. Благодаря этому, угловой диаметр Солнца и Луны почти одинаков. Подробнее о солнечных затмениях смотрите в разделе о Солнце, а здесь мы еще немного остановимся на лунных
Земная тень вблизи Луны имеет больший, чем у Луны, угловой размер, поэтому пересечение Луною этой тени может длиться десятки минут. Сначала Луны слева касается едва видимая полутень Земли (для наблюдателя на Луне, стоящего в полутени, Солнце частично загорожено Землею). Пересечение Луною полутени длится около часа, после чего, Луны касается тень (для того же наблюдателя на Луне, в тени, Солнце загорожено Землею полностью). Через минут 30 Луна полностью входит в тень, приобретая темно-красный, бордовый цвет, вызванный тем, что Лучи солнца, преломляясь в земной атмосфере, освещают-таки Луну в тени Земли. Как известно, лучше всего рассеиваются синие лучи, а красные лучи, преломившись, доходят до лунного диска. Полное затмение Луны может длится больше часа. Разные этапы затмения еще называют фазами затмения, например, "фаза полутеневого затмения" и т. п. Иногда, когда линия Солнце-Земля-Луна слишком далека от идеала, фаза полного затмения вообще может не наступить, при большем отклонении от этой идеальности, тень Земли может пройти даже мимо, и будет наблюдаться лишь покрытие Луны полутенью. В зависимости от расположения трех небесных тел, продолжительность той или иной фазы может меняться. По тем же причинам разной бывает яркость диска Луны во время наступления фазы полного затмения. Случается, что Луны не видно вовсе, и наоборот, зарегистрированы случаи, когда сторонние наблюдатели не верили, что имеет место затмение: так ярка была Луна
Наконец, посмотрите снимок первого затмения 2000-го года. Долгая четырёхчасовая экспозиция позволила испанцу Хуану Карлосу Кассадо представить всё затмение в виде полосы переменной яркости в таинственном обрамлении древних развалин южной страны. То же затмение в виде трёх объединённых снимков представлено справа. В ночь 20-го января эти фотографии сделал Стефан Барнс
Лунная поверхность в очень малой степени подвержена изменениям. Эпоха активного выпадения метеоритов осталась далеко в прошлом: два миллиарда лет назад. Вулканической и тектонической активности тоже не наблюдается. Отсутствие плотной атмосферы и воды устраняет еще две причины, которые могли бы обновлять лик Луны
Есть два типа лунной поверхности: морской и материковый. Морями, как уже говорилось, называются темные участки видимого диска, материками - светлые. Во времена, когда наш спутник стал остывать после эпохи частично расплавленного состояния, внешние слои Луны образовали тонкую кору, которую могли пробивать крупные метеориты. Появлявшиеся при таких соударениях углубления (иногда в сотни и тысячи километров) заполняла лава, выходившая на поверхность сквозь разрушенные участки коры. Застывая, лава создавала относительно гладкий морской тип поверхности. Здесь меньше кратеров, отражательная способность (альбедо) морских участков не велика
Материковые участки более светлы, и они настолько изобилуют кратерами, что последние, порой, наслаиваются друг на друга. Ранее существовала гипотеза о вулканическом происхождении кратеров. Но сегодня верх одерживает метеоритная теория. Крупные метеориты, врезаясь в лунную поверхность, выбрасывали вверх огромное количество вещества, части которого могли вовсе преодолеть лунное притяжение. Выброшенные породы разлетались, порой, на десятки и сотни километров, образовывая так называемые лучи. В центре кратера обычно возникала горка, а сам кратер создавался отброшенным веществом, которое образовывало вал-окружность
На Луне также найдены горы, расщелины. Эти виды рельефа возникли, по-видимому, при застывании Луны, когда лунная кора была подвижной. Вызывать эти движения могли как внутренние процессы, так и метеоритная бомбардировка
Горы на Луне принятно было называть так же как и Земные. На Луне есть свои Карпаты, Кавказ, Альпы. Моря получили свои названия в знак древних поверий о том, что Луна управляет земной погодой, людскими чувствами. Различные имена, связанные с погодой, Вы встретите на лунной карте в изобилии: Море Дождей, Море Ясности, Океан Бурь, а также "эмоциональные" Море Спокойствия, Море Кризисов. Кратеры назывались в честь известных ученых, писателей и прочих всемирных знаменитостей: Коперник, Тихо Браге, Циолковский. Некоторые интересные объекты видимой стороны Луны приведены в этой таблице. Там же Вы можете найти помощь в отыскании их на Луне при наблюдениях
На Луне, как считалось, нет воды. Об этом говорили многочисленные спектроскопические и химические исследования. Но в 1994-м, 1998-м году новые исследования дали, кажется, другую информацию: вблизи южного полюса Луны, где никогда не бывает высоко стоящего над горизонтом Солнца, обнаружены следы воды. Лед мог там сохраниться, так как температура в тех областях не поднимается выше нуля. Для возможных научных станций будущего на Луне это имеет большое значение: добыть воду из пород на Луне, вероятно, окажется дешевле, чем доставлять ее с Земли
Луна имеет меньшую, чем Земля плотность. Это потому, что там почти нет тяжелых элементов типа железа и никеля. По одной из версий, в начальной стадии формирования еще полужидкой Земли, когда вещества уже почти перераспределились на слои - тяжелые расположились ближе к центру (железо), а легкие (кремний и др.) расположились у поверхности - тело, схожее по размерам с Марс, вскользь задело Землю, оторвав часть ее наружных слоев, из которых, якобы, и образовалась более легкая Луна. Поэтому у Луны нет железного ядра и заметного магнитного поля. В целом, вещество Луны имеет тот же состав, что и земная кора, если говорить о поэлементном анализе. Одни и те же элементы на Земле и Луне образуют преимущественно разные соединения
Первым человеком, посмотревшим на Луну в телескоп, был Галилей. Ему же, соответственно, принадлежит и открытие лунных гор и кратеров. Это открытие теперь каждый может повторить с помощью простого бинокля
Луна начала изучаться автоматическими станциями еще до появления человека в космосе. 4-го октября 1959-го года советская автоматическая станция "Луна 3" впервые сфотографировала обратную сторону Луны, на которой почти не оказалось морей. Советская же станция "Луна 9" 31-го января 1966-го года первой совершила удачную мягкую посадку на Луну в Океане Бурь, западнее кратеров Рейнер и Марат. Были произведены снимки Луны с разных высот и круговая панорама на самой поверхности. "Луна 10" первой стала искусственным спутником Луны 3 апреля 1966-го года, оставаясь им в течение 57-ми дней. Другая советская станция "Луна 16 "первой доставила образцы лунного грунта на Землю 24-го сентября 1970-го года. Станцией "Луна 17", запущенной 10-го ноября 1970-го года, на Луну был доставлен самоходный аппарат "Луноход 1", представлявший собой комплексную лабораторию. Аппарат проделал по поверхности спутника Земли путь длиною 10 540 метров. "Луноход 2" был доставлен 16-го января 1973-го года станцией "Луна 21". По восточному краю Моря Ясности самоходный аппарат прошел маршрут, протяженностью 37 км. Последней "Луной" была "Луна 24", в августе 1976-го года доставившая на Землю двухметровую колонку лунного грунта. 4 отечественных станции типа "Зонд" проводили разнообразные исследования в окололунном пространстве и возвращались на Землю
Американцы отправили к Луне около 30 аппаратов. 4 первых "Пионера" неизменно друг за другом в августе-декабре 1958-го года отклонялись от расчетных траекторий и не выполняли поставленных задач. С 1962-го по 1965-й годы к Луне были направлены семь аппаратов "Рейнджер", три из которых достигли-таки Луны и передали фотоснимки поверхности. С 1966-го по 1968-й годы на орбиту вокруг нашего естественного спутника были выведены пять станций "Лунар-Орбитер" и две станции "Эксплорер". Для посадки на Луну проводились в то же время запуски семи аппаратов "Сервейр". Кроме того, были запущены 17 "Аполлонов", 6 из которых доставили на Луну астронавтов, проведших там уникальные исследования. Первым человеком на Луне стал Нил Армстронг, командир "Аполлона 11". После 74-го года изучение Луны почти прекратилось. В 1994-м, однако, американский аппарат "Климентина" возобновил исследования нашего спутника, сделав, в том числе, около 3 млн. фотографий и предположительно открыл на Луне воду
Одной из труднейших задач небесной механики была теория движения Луны. Изучая движения планет, учёным приходится рассматривать возмущения, которые создаёт воздействие других планет, сравнительно слабое по сравнению с притяжением центрального тела - Солнца. В случае же Луны оно как раз и выступает в роли главного "возмутителя" движения спутника Земли. Возмущения от него весьма велики и всё время меняют свою величину и направление в зависимости от взаимного расположения Земли, Луны и Солнца.
Первые усилия для создания теории движения Луны предпринял Ньютон. Ему удалось на основе закона всемирного тяготения объяснить основные неравенства (периодические отклонения) движения Луны, открытые ещё в древности и подтверждённые такими наблюдателями, как Тихо Браге. "Большое эллиптическое неравенство" объяснялось эллиптичностью лунной орбиты, эвекция (огглат. evehere - "поднимать") - тем, что в новолуние Луна оказывается ближе к Солнцу, чем Земля, а в полнолуние - дальше. Вариация происходит из-за изменения скорости движения Луны на орбите опять-таки под действием притяжения Солнца. Годичное уравнение связано с эллиптичностью земной орбиты, а значит с периодическим изменением расстояния Земли и Луны от Солнца в течение года.
Но не всё было так просто. Когда Ньютон попытался рассчитать поворот линии апсид лунной орбиты (её большой оси, соединяющей перигей и апогей), он получил время полного обращения, равное 18 годам, хотя на самом деле это время равно 9. Так показывали наблюдения со времён Гиппарха.
Клеро попробовал решить эту задачу и... получил то же значение времени полного оборота линии апсид, что и Ньютон: 18 лет. В решение задачи включился Д'Аламбер. Действуя независимо от Клеро, он получил, увы, то же самое. Приступил к этой проблеме Эйлер и тоже не смог объяснить наблюдаемый период. Это было в 1747-1749 гг. А может быть, закон Ньютона неточен и в его формулу надо внести дополнительный член?
Тогда Петербургская Академия наук объявила конкурс под таким названием: "Показать, согласны ли все неравенства, которые наблюдаются в движении Луны, с ньютоновской теорией и какой должна быть истинная теория всех этих неравенств, чтобы по ней можно было со всей точностью определять место Луны на любое время". Надо думать, что тему и формулировку её предложил Эйлер.
И Клеро заново взялся за решение задачи. Он понял, что полученное им и Д'Аламбером значение годичного поворота линии апсид - это только первый член ряда, выражающего эту величину. Клеро нашёл второй член: расхождение теории с наблюдениями уменьшилось в несколько раз. Он прибавил третий, четвёртый члены (расхождение стало совсем незначительным), понял, что задача решена, и написал соответствующий мему-ар. Премия Петербургской Академии наук была присуждена ему. Это произошло в 1751 г. На следующий год его мемуар был издан в Петербурге, а затем его переиздали в Париже.
Этот пример наглядно показал, что для хорошего согласия теории с наблюдениями нужно вычислить много членов рядов, выражающих те или иные величины. В теории Клеро было 20 членов каждого ряда. В современных теориях их число измеряется уже тысячами. Зато точность их намного превосходит точность теории Клеро.
Созданием теории движения Луны занимались и другие учёные того времени. Леонард Эйлер создал в 1753- 1772 гг. целых три теории движения Луны. Почему же три? Дело в том, что Эйлер всё время искал новые пути для решения сложных задач небесной механики. Ему принадлежат методы, верно служившие астрономам и в дальнейшем, спустя и 100, и 200 лет. Теорию движения Луны развивал и Лаплас, его ученики и последователи.
В настоящее время астрономы используют для построения формул, отражающих движение Луны, ЭВМ. Это привело к созданию так называемых машинных теорий. Однако без трудов классиков небесной механики учёным никогда не удалось бы этого сделать.
Накопленные знания Лаплас подытожил в пятитомном труде под названием "Трактат о небесной механике", выходившем с большими перерывами в 1798-1825 гг. Сам термин "небесная механика" введён Лапласом. Ученики и последователи великого учёного сравнивали этот труд со стройным зданием, полагая, что оно почти не потребует переделки.
Эти предположения не подтвердились. Хотя здание действительно было грандиозное, но оно потребовало многочисленных переделок и не раз достраивалось учёными последующих поколений. Увеличивалась точность наблюдений, требовалось уточнить и теорию. Возникали новые задачи (например, о движении искусственных спутников Земли и планет). Однако громадная заслуга Пьера Симона Лапласа и его предшественников именно в том и состоит, что они построили это здание.
Вполне естественно, что Луна, как ближайшее к Земле небесное тело, стала первым объектом, к которому направились космические аппараты.
Советские автоматические межпланетные станции первого поколения "Луна-1, -2, -3" не использовали ни коррекцию курса на траектории Земля - Луна, ни торможение при подлёте. Они совершали полёт напрямую. Стартовав с Земли 2 января 1959 г., станция "Луна-1" массой 361 кг впервые достигла второй космической скорости (т. е. минимальной скорости, которую должен развить стартующий с небесного тела объект, чтобы преодолеть силу его притяжения; для Земли она равна 11,19 км/с) и прошла на расстоянии около 6 тыс. километров от поверхности Луны.
"Луна-2" достигла лунной поверхности 14 сентября 1959 г. вблизи центрального меридиана (место посадки этой станции теперь называется Заливом Лунника). Её приборы показали, что Луна практически не имеет собственного магнитного поля. А на борту станции "Луна-3" находилась фототелевизионная аппаратура, впервые передавшая на Землю снимки части видимого и почти 2/3 невидимого полушария. На них было большое количество дефектов, но, несмотря на это, учёным удалось выявить множество деталей на обратной стороне Луны. Открытые "Луной-З" кратеры получили названия: Циолковский, Курчатов, Джордано Бруно, Жюль Берн и др.
Крупномасштабное фотографирование отдельных участков поверхности видимого полушария выполнили в процессе падения на Луну американские космические аппараты
"Рейнджер-7, -8, -9" в 1964 и 1965 гг. Советская станция "Зонд-3" завершила фотографирование невидимого полушария.
Первая мягкая посадка на лунную поверхность была осуществлена в феврале 1966 г. советской автоматической станцией "Луна-9". Телекамеры передали на Землю панорамы окружающего ландшафта с разрешением до нескольких миллиметров. В 1966 г. на орбиту вокруг Луны также были выведены искусственные спутники "Луна-10, -11, -12". На них были установлены приборы для исследования спектрального состава инфракрасного и гамма-излучения лунной поверхности, оборудование для регистрации метеорных частиц и др. В том же году американский аппарат "Сервейор-1" совершил мягкую посадку на Луну и в течение шести недель передавал на Землю снимки поверхности. В конце декабря 1966 г. мягкую посадку выполнила станция "Луна-13", её выносные приборы исследовали свойства лунного грунта, а телевизионные камеры фотографировали окружающую местность.
Мягкие посадки в различных районах Луны осуществили американские космические аппараты "Сервей-ор-3,-5,-6,-7" (1967-1968 гг.), которые должны были исследовать лунную поверхность и выбрать места посадок космических кораблей серии "Аполлон". Пять американских искусственных спутников "Лунар орбитер" в 1966-1967 гг. фотографировали Луну и изучали её гравитационное поле. Детальная съёмка поверхности в районе лунного экватора, выполненная этими спутниками, также нужна была для отбора будущих мест посадок космических кораблей с астронавтами.
Отработка элементов программы полёта на Луну проводилась сначала непилотируемыми кораблями серии "Аполлон", а затем и пилотируемыми ("Аполлон-8, -9, -10"). Весил "Аполлон" 44 т и состоял из основного блока и лунной кабины, включавшей посадочную и взлётную ступени. Пилотируемые облёты Луны планировались и в нашей стране. Для отработки манёвров на орбите использовались космические аппараты "Зонд-4, -5, -6, -7, -8". Однако от этих планов отказались после того, как такие облёты совершили американские астронавты.
Место посадки лунной кабины космического корабля "Аполлон-11" было выбрано в Море Спокойствия, где уже побывали аппараты "Рейнджер-8" и "Сервейор-5". Астронавты Нил Армстронг и Эдвин Олдрин осуществили посадку 20 июля 1969 г. Первым из кабины вышел Армстронг, произнеся при этом фразу, ставшую исторической: "Это небольшой шаг для человека, но огромный скачок для человечества". Астронавты разговаривали с президентом США, используя космическую радиосвязь; установили отражатель лазерного излучения, сейсмометр, сделали снимки, собрали 22 кг образцов лунного грунта. Все работы заняли у них 2 ч 30 мин. За это время астронавты удалялись от посадочного модуля на расстояние до 100 м. В основном блоке на орбите находился Майкл Коллинз, который также проводил научные исследования.
Астронавты "Аполлона-12", запущенного 14 ноября 1969 г., Чарлз Конрад и Алан Бин совершили посадку в районе Океана Бурь, недалеко от лунного экватора. В основном блоке корабля на орбите вокруг Луны оставался Ричард Гордон. Конрад и Бин дважды выходили на поверхность, установили аппаратуру для изучения сейсмической активности Луны и состава частиц солнечного ветра у её поверхности. Поскольку место посадки было выбрано рядом со станцией "Сервейор-3", которая пробыла на Луне два года семь месяцев, в задачу астронавтов входило её обследование. Они не обнаружили никаких следов разрушения станции; только слой рыже-коричневой пыли покрывал её. На этот раз было собрано 34 кг образцов лунной породы.
Экипаж "Аполлона-13" не смог выполнить посадку на Луну из-за взрыва в двигательном отсеке основного блока. Совершив облёт Луны, астронавты вернулись на Землю через семь дней.
Советская автоматическая станция "Луна-16" в сентябре 1970 г. произвела мягкую посадку в Море Изобилия, где специальным грунтоза-борным устройством была взята лунная порода весом 105 г и помещена в возвращаемый аппарат, который доставил её на Землю. В том же году станцией "Луна-17" впервые был доставлен самоходный аппарат "Луноход-1", проделавший путь длиной 10,5 км и передавший на Землю множество снимков. С помощью установленного на "Луноходе-1" лазерного уголкового отражателя удалось уточнить расстояние от Земли до Луны.
Экспедиция "Аполлона-14" проходила с 31 января по 9 февраля 1971 г. Репортаж с места посадки лунной кабины в районе кратера Фра Мауро передавался на Землю. Астронавты Алан Шепард и Эдгар Митчелл провели на поверхности Луны 9 ч и собрали 44,5 кг пород. В августе 1971 г. у подножия лунных гор Апеннины высадился экипаж корабля "Аполлон-15". Впервые астронавты Дэвид Скотт и Джеймс Ирвин использовали для передвижения луноход, проделав на нём путь длиной 10 км, и провели многочисленные исследования. В частности, они изучали глубокое ущелье, носящее название Борозда Хэдли, однако спуститься вниз без специального снаряжения не решились.
В апреле 1972 г. экипаж лунной кабины космического корабля "Аполлон-16" совершил посадку в материковом районе в окрестностях кратера
Декарт. В декабре того же года была успешно выполнена последняя, шестая экспедиция на корабле "Аполлон-17".
Второй самоходный аппарат "Луноход-2", доставленный станцией "Луна-21" в январе 1973 г., продолжил исследования в довольно сложном районе Луны, являющемся переходным от моря к материку. С помощью бортовой телевизионной аппаратуры на Землю были переданы многочисленные панорамы и снимки окружающей местности, данные о свойствах грунта и его химическом составе. Всего было пройдено 37 км. В 1974 г. аппарат "Луна-22" выполнял изучение рельефа и гравитационного поля с орбиты искусственного спутника Луны. В том же году "Луне-23" удалось совершить посадку в районе Моря Кризисов. Исследования Луны советскими автоматическими станциями были завершены космическим аппаратом "Луна-24", выполнившим автоматическое бурение лунного грунта в Море Кризисов на глубину 2 м и доставившим на Землю 22 августа 1976 г. 170 г лунной породы.
После этого довольно долго к Луне не было запусков ни в нашей стране, ни в США. Интересно, что лишь 14 лет спустя, в марте 1990 г., Япония с помощью ракеты "Нисан" вывела на орбиту вокруг Луны автоматический аппарат "Мусес-А" для дистанционного исследования лунной поверхности.
К аппаратам нового поколения, создающимся с использованием сверхлёгких материалов, относится станция "Клементина", запущенная в январе 1994 г. Помимо фотографирования поверхности Луны ею выполнены измерения высот рельефа, а также уточнены толщина лунной коры, модель гравитационного поля и некоторые другие параметры.
Как это ни удивительно, но зарисовать многие детали лунного рельефа может каждый, кто этого захочет, даже если у него нет телескопа. Посмотрите на Луну в дни полнолуния и нанесите границы темных участков поверхности - у вас в руках карта лунных морей. А если вы обзавелись биноклем, то сможете нанести на карту лунные горы и крупные кратеры. Как видите, селенографией, т.е. изучением лунной поверхности можно начать заниматься с самыми скромными средствами или вообще без них; но зоркие глаза иметь желательно.
В этом смысле Луна - уникальное небесное тело. Грубую карту Луны могли составить древние греки или даже шумеры. Да что там шумеры, её мог изобразить на стене своей пещеры кроманьонец десятки тысяч лет назад. Поэтому удивительно, что старейшему из дошедших до нас рисунков Луны всего 400 лет: его сделал в 1603 г. английский физик и придворный врач Уильям Гильберт (1544-1603), разумеется, без телескопа, который тогда ещё не изобрели. Возможно, были и другие, более ранние зарисовки, но пока они не обнаружены.
Первые телескопические зарисовки Луны принадлежат итальянскому физику и астроному Галилею, немецкому астроному Симону Марию (1573-1624) и англичанину Томасу Харриоту (1560-1621). Они выполнены в 1609-10 гг. Совершенствовались телескопы - детальнее становились зарисовки Луны. При этом одни авторы, как Де Рейта (1645 г.) рисовали карты в астрономической ориентировке, когда север внизу, то есть так, как Луна видна в телескоп, а другие, например Ван Лангрен, в астронавтической ориентировке, когда север наверху, то есть так, как мы видим Луну невооруженным глазом. Однако, несмотря на массу подробностей, эти рисунки нельзя назвать картами в полном смысле, поскольку на них не было координатной привязки, т.е. отсутствовали параллели и меридианы, по которым можно было бы определить широту и долготу кратеров, гор и других деталей рельефа.
В результате длительных телескопических наблюдений были открыты важнейшие особенности движения Луны, например, либрации - видимые колебания лунного шара относительно его среднего положения, обусловленные неравномерным движением Луны по орбите при равномерном вращении вокруг оси, а также наклоном оси и орбиты к эклиптике. Попытки изобразить лунные либрации на своих зарисовках предпринимал уже польский астроном Ян Гевелий (1645 г.).
Качество зарисовок лунной поверхности постоянно возрастало, что ясно видно по рисунку Кассини 1680 г. Но это ещё не были карты. Первую в истории карту Луны построил в 1750 г. немецкий астроном Тобиас Майер (1723-1762): используя составленную им сеть из 24 опорных точек на лунной поверхности, он построил селенографическую систему координат. Это произведение имело все важнейшие элементы карты: опорную сеть селенодезических пунктов, сетку координат, построенную в определенной проекции, отображение рельефа поверхности с применением условных знаков и масштаб. В ХIX в. появились карты, изображавшие отдельные участки поверхности Луны в более крупных масштабах на нескольких листах. Карта, изданная в 1837 г. при участии немецкого банкира и любителя астрономии Бера и астронома Медлера, с высокой точностью измерившего положения 105 контрольных точек на Луне, состояла из 25 секций размером 40 х 40 см каждая.
Названия сторон света на Луне введены так же, как на Земле: чтобы для лунного наблюдателя Солнце восходило на востоке и заходило на западе. Для земного наблюдателя с лунного востока на лунный запад перемещается линия терминатора. Заметим, что для астрономов это не совсем привычно: перемещение справа налево в южной части неба астрономы называют "с запада на восток", имея в виду земные ориентиры. Итак, глядя с Земли на Луну без телескопа, мы видим лунный север вверху, юг - внизу, восток - справа, запад - слева; т.е. так же, как на картах Земли.
В середине XIX в. Луна стала первым объектом астрофотографии, а к концу века ее фотопортреты достигли отменного качества, хотя и не могли соперничать с визуальными картами по проработке мелких деталей.
За всю историю картографирования Луны до начала космических полетов (т.е. примерно за 350 лет) было создано около 120 рисунков, карт и атласов видимой стороны Луны. Интересно, что в России в этот период, насколько нам известно, не было составлено ни одной лунной карты. Однако, первая карта обратной стороны Луны была создана именно в России (СССР) по самым первым снимкам, переданным космическим зондом "Луна 3" в 1959 г. Впервые увиденные землянами детали обратной стороны Луны показаны на карте условными знаками, их координаты определены в единой селенографической системе, а 18-ти крупнейшим объектам присвоены наименования. Полученные на Земле по радиоканалу снимки были сильно искажены помехами, но методика, разработанная в Государственном астрономическом институте им. П.К. Штернберга (МГУ) под руководством Ю.Н. Липского (1909-1978) позволила выявить множество деталей рельефа невидимого полушария. На этой карте впервые появились Море Москвы и Море Мечты, кратеры Циолковский, Джордано Бруно, Менделеев, Склодовская-Кюри и другие. Светлое протяженное образование было названо Хребтом Советским, однако оно не подтвердилось последующими съемками.
Первая "Полная карта Луны", на которой были показаны и видимое полушарие (на основе наземных фотографий), и невидимое (по снимкам "Луны 3" и "Зонда 3"), также была издана в СССР в 1967 г. Позже, по мере поступления новых фотоматериалов с зондов "Лунар Орбитер", "Зонд 6, 7, 8" и пилотируемых кораблей "Аполлон", "Полная карта Луны" на 9 листах в масштабе 1:5 000 000 ( в 1 см - 50 км) переиздавалась в 1969 и 1979 гг.
За 40 лет с 1960 г. в мире издано столько же карт и атласов Луны, сколько за 350 лет телескопических наблюдений. Это карты самых разных масштабов и назначений, охватывающие обе стороны Луны. Отметим лишь некоторые карты, изданные в СССР. "Фотокарта видимого полушария Луны" (1967 г.), составленная в астронавтической ориентировке по наземным телескопическим снимкам в масштабе 1:5 000 000 и "Карта Луны" (видимая сторона), составленная в том же масштабе в астрономической ориентировке (1967 г.), на которой рельеф поверхности показан условными знаками. В мастабе 1:1 000 000 составлены 7 листов карты Луны на экваториальную зону видимого полушария и на часть невидимого полушария. Помимо карт обзорного назначения создаются карты и специального назначения, например, "Фотометрическая карта Луны", "Карта альбедо Луны", "Карта цвета Луны", "Структурно-геологическая карта" и другие.
В США картографирование Луны началось с создания "Фотографического атласа Луны" под редакцией Дж. Койпера. Для этого были отобраны лучшие фотографии из разных обсерваторий мира. Разрешение на снимках в центре диска составляет 0,7 км, а на краю 2 км. Для создания "Лунной аэронавтической карты" в масштабе 1:1 000 000 использовалась киносъемочная аппаратура на обсерватории Миди-Пиренеи во Франции с тем, чтобы проследить за изменением теней от различных форм рельефа и определить высоты гор и глубины кратеров. Карты Луны самого разного назначения созданы в США в масштабах 1:10 000 000, 1:5 000 000, 1: 2 750 000, 1:250 000 и даже крупнее для отдельных участков поверхности. Интересны карты Луны, составленные в Чехословакии Й. Клепештой и А. Рюклом. Карты А. Рюкла составлены не только для видимого и обратного полушарий Луны, но также для северного и южного, западного и восточного полушарий в масштабе 1:10 000 000.
Исходным материалом для отображения рельефа лунной поверхности на картах служат фотографии, полученные наземными телескопами, а также автоматическими и пилотируемыми космическими аппаратами. Причем, следует иметь в виду, что одна фотография какого-либо участка поверхности не может передать все особенности данного региона, поскольку вид лунной поверхности на снимках меняется в значительной степени при изменении условий освещения. В лучших фотографических атласах видимой стороны Луны обычно приводятся несколько фотографий каждого района, полученных при разной высоте Солнца: косые лучи подчеркивают рельеф, отвесные - выделяют различия цвета и яркости. Для обратной стороны пока нет таких подробных атласов.
Начинающие астрономы любят рассматривать Луну в период первой чатверти, когда хорошо видна область близ терминатора: падающие на поверхность под небольшим углом солнечные лучи четко выделяются даже невысокие формы рельефа. В период же полнолуния диск Луны становится маловыразительным. Но для опытного астронома этот период тоже очень интересен: при отвесно падающих солнечных лучах хорошо видны темные участки поверхности, неоднородности отражательной способности (альбедо) внутри морей и светлые лучевые системы у кратеров, которые не удается заметить при косом освещении.
На поверхности Луны выделено 14 типов образований, которые составляют систему лунной номенклатуры и служат основой для лунной топонимики.
Тип образований
рус. / лат. Определение
На Луне принято выделять области двух типов: светлые - материковые, занимающие 83% площади лунного шара, и темные - морские, составляющие 17%. Материки отличаются более высокой отражательной способностью, наличием значительных неровностей и множеством кратеров разных размеров и степени сохранности вала. Моря - относительно ровные области с меньшим количеством кратеров; они лежат ниже уровня материковой поверхности. Например, Море Дождей расположено на 3 км ниже, а Море Влажности на 2 км ниже окружающей местности.
Морские области распределены по поверхности весьма неравномерно: на видимом с Земли полушарии они занимают 31% площади, а на обратном - около 3%. В северном полушарии моря занимают вдвое большую площадь, чем в южном. Внутри морей можно также видеть более темные и более светлые участки. Например, окраинные части Моря Ясности выглядят темнее его центральной области. При низком положении Солнца в морях можно видеть невысокие протяженные формы рельефа шириной в несколько километров - складчатые жилы. Моря сложены базальтовыми лавами, и складчатые жилы обычно отмечают области наложения более поздних потоков на уже существовавшие лавовые излияния. Очевидно, что вблизи складчатых жил толщина лавовых потоков может быть минимальной.
Названия морям дал итальянский астроном Джованни Риччоли (1598-1671), по зарисовкам которого Ф. Гримальди выгравировал карту в 1647 г. Посмотрев на карту, можно заметить, что названия морей распределены не случайно. В восточной части видимого полушария расположены Море Ясности, Море Спокойствия, Море Изобилия, Море Нектара, тогда как в западной - Океан Бурь, Море Дождей, Море Облаков, Море Влажности. В середине XVII в. считали, что погода на Земле меняется в зависимости от фаз Луны. Как видно из названий морей, Луна в первой четверти, когда видна восточная часть диска, служит предвестником ясной погоды, а в последней четверти - ненастной. Вы можете сами проверить, существует ли такая связь, если в течение года будете записывать данные о погоде и фазах Луны.
Обычно на картах используют латинские наименования. На наших картах мы даем русскую транскрипцию названий.
Давайте совершим небольшую экскурсию по Луне (пока - с помощью схемы. Начнем путешествие с восточного края лунного диска. На лимбе детали сильно искажены перспективой, поэтому их трудно рассматривать. На глобусах Луны, которые раньше были в школах, все формы рельефа показаны без искажений. Если такой глобус сохранился, то лучше изучать детали рельефа на нем.
На Луне принято выделять области двух типов: светлые - материковые, занимающие 83% площади лунного шара, и темные - морские, составляющие 17%. Материки отличаются более высокой отражательной способностью, поскольку сложены относительно светлыми породами типа анортозитов, наличием значительных неровностей и множеством кратеров разных размеров и степени сохранности вала. Моря - относительно ровные области, покрытые лавовыми потоками темных пород базальтового типа, с меньшим количеством кратеров. Таким образом, моря темнее материков как из-за различия в составе пород, так и по причине иной структуры поверхности (моря глаже и поэтому слабее рассеивают свет).
Моря лежат ниже уровня материковой поверхности. Например, Море Дождей расположено на 3 км ниже, а Море Влажности на 2 км ниже окружающей местности. На восточном лимбе вблизи экватора видны темные пятна Моря Краевого и Моря Смита. Интересно, что в одном из проектов создания будущей лунной базы Море Смита называют в числе возможных мест, удобных для проведения исследовательских работ. Площадь маленького пятна Моря Волн всего 21 тыс. км2. Наиболее четко выделяется граница Моря Кризисов, площадь которого 176 тыс. км2. Дно этого моря расположено на 3,5 км ниже окружающей местности. На его краю виден яркий кратер с лучевой системой - Прокл диаметром 28 км.
Море Спокойствия, по площади равное Черному морю на Земле (421 тыс. км2), знаменито тем, что именно здесь американский астронавт Нейл Армстронг впервые ступил на лунную поверхность 20 июля 1969 г. Море Спокойствия соединяется с Морем Нектара и Морем Изобилия, в котором советский зонд "Луна 16" (1970 г.) взял пробу лунного грунта и доставил ее на Землю. На границе Моря Ясности с материком выполнял исследования самоходный аппарат "Луноход 2" (1973 г.)
Узкая полоска Моря Холода переходит в Залив Росы и Океан Бурь - самое крупное образование видимого полушария площадью 2,1 млн км2. На окраине Океана Бурь вблизи экватора выделяется темное дно кратера Гримальди. Здесь наземными методами исследований обнаружены кислородосодержащие породы - ильмениты. Этот кратер тоже мог бы стать одним из возможных мест будущей лунной базы. Площадь Моря Дождей - 829 тыс. км2. Справа хорошо заметен кратер Аристарх, диаметром 42 км, а выше кратер Коперник диаметром 94 км. Темная область к югу от Коперника недавно была названа Морем Островов. Море Познанное получило свое название после того, как в 1964 г. здесь опустился американский зонд "Рейнджер 7". К югу от Залива Радуги совершил свое путешествие первый самоходный лунник "Луноход 1" (1970-71 гг.).
В Море Влажности обратите внимание на систему параллельных борозд, а в Море Облаков найдите сброс - Прямую Стену. Слева от Моря Облаков в материковой части выделяется цепочка из трех кратеров, размеры которых превышают 100 км. Средний из них Альфонс, известен тем, что в 1957 г. там наблюдалось свечение, зарегистрированное на спектрограммах. Самый яркий кратер с мощной лучевой системой назван в честь астронома Тихо Браге, составившего таблицы перемещения планет, на основе которых Кеплер вывел законы движения планет.
Горные образования на Луне представляют собой части колец, окаймляющих круговые моря. Еще в середине семнадцатого века польский астроном Ян Гевелий предложил называть горы на Луне такими же именами, как и на Земле. Вокруг Моря Дождей расположены Альпы, Кавказ, Апеннины, Карпаты, Юра. Море Нектара окружено горами Алтай и Пиренеи. Горы Кордильеры и горы Рука окружают Море Восточное. Самые высокие горы на Луне, по-видимому, Апеннины: там высота отдельных хребтов достигает 5,6 км над поверхностью соседнего Моря Дождей. Горы Юра возвышаются над Заливом Радуги на 5 км, в то время как в Карпатах лишь отдельные горки достигают высоты 2 км над окружающей местностью.
Преобладающей формой рельефа Луны являются кратеры. Если вал кратера четкий, хорошо сохранившийся, то это признак относительной молодости, а кратеры с разрушенными валами - более старые. Крупные кратеры часто имеют на дне центральную горку и террасы на внутренних склонах, например, кратеры Коперник и Аристарх. У старых кратеров горки и террасы встречаются реже. Особую группу составляют кратеры с лучевыми системами, представляющими собой длинные светлые полосы, радиально исходящие от вала кратера. Лучи можно видеть не всегда, а лишь при определенных условиях освещения поверхности. Наиболее четко эти образования проявляются в полнолуние. При других фазах они менее заметны, а в областях, близких к терминатору, не наблюдаются вовсе. Лучи встречаются как у крупных кратеров, например, Тихо диаметром 87 км, так и у небольших, но обязательно молодых. Кратеров с лучевыми системами на Луне несколько десятков.
Долины - отчетливо выраженные обособленные впадины шириной в несколько километров и протяженностью в десятки и сотни километров - встречаются на склонах обширных горных областей (например, Альпийская долина), а также в материковых районах (например, долина Рейта). Более узкие, длинные, но не обрывистые ложбины, сохраняющие на всем протяжении одинаковую ширину называют бороздами (например, борозды Сирсалиса). Они часто тянутся на сотни километров вне зависимости от рельефа поверхности. Обрывистые разломы называют трещинами. В морях иногда встречаются уступы - типичные сбросы; например, в Море Облаков звестен уступ Прямая Стена.
На обратной стороне Луны особое внимание привлекают очень крупные кольцевые структуры, диаметром более 300 км, названные бассейнами. Самые большие из них, такие как Море Восточное, Герцшпрунг, Аполлон, Королев, Море Москвы и другие имеют помимо внешнего вала еще и внутренний, диаметр которого, как правило, вдвое меньше внешнего. Иногда внутренние кольца сильно разрушены.
Любопытно, что некоторые крупные бассейны обратной стороны Луны являются антиподами морей видимой стороны. Например, Королев - антипод Моря Изобилия, а Герцшпрунг - Моря Спокойствия.
К северо-востоку от Моря Восточного радиально отходят гигантские цепочки кратеров, простирающиеся на расстояния до тысячи километров. Диаметр кратеров, входящих в эти цепочки, составляет в среднем 10-20 км. Три самые протяженные цепочки получили названия ГДЛ (Газодинамическая лаборатория), ГИРД (Группа изучения реактивного движения) и РНИИ (Реактивный научно-исследовательский институт). Эти три научные организации внесли основной вклад в развитие ракетостроения в нашей стране.
Кратеры, отдельные горные вершины (пики, мысы), а также гряды называют (посмертно) именами астрономов и выдающихся ученых других специальностей. Исключением стали 12 кратеров, названных в честь живущих космонавтов и астронавтов. Все предложенные наименования утверждает Международный астрономический союз. Общее правило планетной номенклатуры - не использовать имена политических и религиозных деятелей, полководцев и философов XIX и XX вв.
Карты Луны используют для решения важных научных и практических задач: восстанавливают историю лунной поверхности, планируют экспедиции на Луну.
Теория раскола предполагает, что Луна изначально была частью Земли, но откололась от нее в ранний период истории Солнечной системы из-за быстрого вращения Земли. Однако здесь возникает столько проблем с точки зрения механики, что в наши дни мало кто принимает эту теорию всерьез.
Если гипотеза о расколе верна, то приходится допустить, что период вращения Земли был не двадцать четыре часа, а всего три. Но в этом случае угловой момент системы Земля-Луна должен был быть вдвое больше своего нынешнего значения (что следует из физического закона сохранения углового момента). Однако угловое движение системы Земля-Луна гораздо меньше. Теория раскола также предполагает, что орбита Луны должна находиться в экваториальной плоскости Земли. На самом же деле орбита Луны расположена под углом 28,5 градусов к экватору.
И, наконец, вряд ли Луне и Земле удалось бы уцелеть в разрушительных катаклизмах приливного происхождения, которые непременно сопутствовали бы процессу раскола (например, испарение земной коры, разрушение Луны вследствие гравитационной неустойчивости).
Другая гипотеза утверждает, что Луна изначально вращалась вокруг Солнца по своей собственной орбите и затем была "захвачена" земным притяжением. В защиту этого предположения еще совсем недавно выступал Кадоган ( Cadogan, 1983). Однако, Гоулд (Gold, 1975, с.26) оспаривает гипотезу захвата на том основании, что подобный процесс совершенно неправдоподобен, хотя теоретически и возможен. Тэйлор (Taylor, 1987, с.474) говорит: "Гипотезы, согласно которым Земля 'захватила в плен' уже сформировавшуюся Луну, больше не рассматриваются всерьез. Во-первых, они сталкиваются с серьезнейшими динамическими проблемами, во-вторых - не объясняют экзотическую геохимию Луны".
Трудно даже представить, каким образом скорость движения Луны могла уменьшится настолько, чтобы "захват" ее Землею стал возможен. Но даже если бы ученым и удалось открыть этот механизм, главный вопрос - как образовалась Луна до захвата - оставался бы открытым. Он-то и подводит на к третьей теории.
Эта теория гласит, что Земля и Луна независимо друг от друга образовались из срастающихся частиц пыли в конденсирующейся туманности. Идея эта, однако, встречает на своем пути множество непреодолимых трудностей. Так, Штайдль ( Steidl, 19796 с.104) отмечает: в экспериментальных условиях силикатные частицы при столкновении почти всегда - даже на малых скоростях - имеют тенденцию к распаду на более мелкие фрагменты, а вовсе не к сращиванию. Нетрудно убедиться, что процесс конденсации, способный вовлечь достаточно большое количество вещества, должен был начаться с объекта, равного Луне по размеру. Конечно же, такой процесс никак не может объяснить происхождение самой Луны!
Кадоган подводит следующий итог: "Ни одна из теорий происхождения Луны не имеет преимущества перед остальными. Проблема в том, что у нас слишком много предположений и слишком мало фактов. Все это происходило настолько давно, что ни одну из гипотез невозможно проверить".
В противовес описанным выше эволюционным теориям, Библия учит нас, что Луна была создана Богом (Пс. 32:6, Евр.11:3, Быт.1:16).
Правильная и стабильная орбита Луны, лунный свет ночью, цикл лунных фаз, с незапамятных времен являющийся для человечества основой календаря - все это говорит об уникальном замысле Создателя и подтверждает Библейский подход к вопросу о происхождении Луны ( DeYoung, 1979). Креационные теории происхождения Луны гораздо убедительнее (см., напр., Humphreys, 1984, сс. 144-5 - выступление на креационной дискуссии о притяжении Луны). Это не значит, что у креационистов уже есть ответы на все вопросы - впереди еще очень много исследовательской работы. Так, сейчас перед учеными-креационистами стоит проблема - объяснить обширную лунную эрозию с точки зрения краткой временной шкалы.
Так или иначе, все естественные теории происхождения Луны противоречат научным данным; и в то время как ученые-униформисты ищут все новые и новые гипотезы, креационисты могут с уверенностью предсказать, что все они не выдержат испытания. В Притчах 1:7 сказано: "Начало мудрости - страх Господень".
Эволюционисты традиционно полагали, что Луна - холодное, "мертвое" тело, которое выглядит сегодня точно так же, как, скажем, три миллиарда лет назад! Однако ширится ряд доказательств, опровергающих эту точку зрения - список скоротечных лунных явлений ( TLP - transient lunar phenomena), таких, как лунотрясения, потоки лавы, выделения газов и т.д. постоянно растет, что свидетельствует о геологической активности современной Луны. Можно предположить, что Луна еще не достигла теплового равновесия и продолжает реагировать на приливные напряжения. К сожалению, до последнего времени единственным документальным доказательством этой гипотезы являлась спектрограмма TLP в лунном кратере Альфонс, сделанная в 1958 году российским астрономом Н.А. Козыревым. 23 мая 1985 года появилось новое потрясающее доказательство: Георгий Коловос (университет Фессалоники, Греция) зафиксировал яркое пятно в районе кратера Прокл. После нескольких лет тщательнейшего анализа вероятность дефекта фотографии или вмешательства некоего атмосферного явления была полностью исключена - снимок Коловоса показывает выделение газа из-под лунной коры, сопровождающееся электрическим разрядом, который и вызвал свечение. Защитники теории TLP реабилитированы; Луна оказалась вовсе не такой инертной, как считалось в прежние годы (Moore, et al., 1989; Moore, 1990, с.10). Малфингер (Mulfinger) в книге Уиткомба и ДеЯнга (Whitcomb and DeYoung, 1978, сс. 105-27) документально подтверждает многие другие сведения о TLP. Эти интереснейшие данные убедительно подтверждают креационную модель молодой Луны. Будь Луне действительно миллиарды лет, она и вправду была бы сейчас "холодной и мертвой".
Поверхность Луны постоянно разрушается и преобразовывается, подвергаясь тепловым деформациям и воздействиям микрометеорных тел. В соответствии с эволюционной теорией, в ранний период существования Солнечной системы пыли было гораздо больше, чем сейчас. На Земле пыль смывается в моря, но на Луне нет ни воды, ни атмосферы, поэтому пыль скапливается в понижениях. За 4,6 миллиарда лет на Луне - особенно на материковых ее участках - должно было скопиться неимоверное количество пыли. Британский астроном Р.А.Литтлтон (Lyttleton, 1956, с.72) предполагал, что слой лунной пыли имеет толщину в несколько километров! Гоулд (Gold, 1955, с.585) также предполагал, что на плоских лунных равнинах чрезвычайно много пыли. Шумейкер (Shoemaker, 1965, с.75) предсказывал, что слой пыли на Луне должен измеряться десятками метров. Азимов (1959, с.36) писал: "Я представляю, как первая космическая станция, выбрав великолепную плоскую площадку для прилунения, медленно садится... и исчезает из виду, погружаясь в пыль".
Однако в 1965 году состоялась конференция по вопросу о структуре поверхности Луны (см. Hess, et al., 1966). На ней, в частности, было сделано следующее заключение: ранние фотографии Рейнджера и исследования оптических свойств рассеянного солнечного света, отраженного поверхностью Луны, показывают, что предсказания о глубине слоя лунной пыли не сбылись! Вопрос окончательно прояснился с появлением на Луне первых космический станций, и особенно - когда на лунную поверхность впервые ступила нога человека. Выяснилось, что слой пыли несравненно тоньше, чем уверяли ученые-эволюционисты - всего 6,5 см! Несмотря на отчаянные попытки пересмотреть представления о скорости отложения пыли или нйти механизмы ее уплотнения, толщина слоя пыли на Луне остается весомым свидетельством в пользу молодого возраста Луны.
Как уже говорилось в предыдущем разделе, поверхность Луны постоянно подвергается микровоздействиям метеорных тел. За миллионы лет эти процессы не могли не перемешать слои лунной почвы. Однако, статья в Science News (Anon, 1971, с.62) сообщает о следующий результатах анализа лунной почвы: "Новое исследование показало, что верхние слои висмута и кадмия оставались на поверхности 15 миллионов лет. Если почва Луны постоянно взрыхляется множеством мини-толчков, то ее слои должны быть перемешаны гораздо сильнее."
Эволюционисты полагают, что большинство лунных кратеров сформировалось в ранний период существования солнечной системы - 3-4 миллиарда лет назад, когда поверхность Луны подвергалась действию обломков и частиц пыли, из которых образовались планеты. Креационисты тоже считают, что большая часть кратеров появилась на Луне вскоре после ее создания - но произошло это не более чем несколько тысяч лет назад. Геофизик Гленн Мортон (Glenn Morton) и астроном д-р Хэролд Слашер (Harold Slusher) в сотрудничестве с Ричардом Мэндоком (Richard Mandock, 1983) исследовали коэффициент текучести (обратно пропорциональный вязкости) базальтовых скальных пород, в которых образовывались кратеры. За чрезвычайно большие промежутки времени твердые тела - например, скальные породы - текут подобно вязким жидкостям. Чем выше вязкость материала, тем медленнее он течет
Значение вязкости лунных пород в сотни миллионов раз ниже, чем необходимо для того, чтобы за три-четыре миллиарда лет где-либо могли образоваться кратеры. Даже будь поверхность Луны гранитной, значение вязкости все равно было бы примерно в 10 миллионов раз ниже, чем нужно для соответствия эволюционной шкале времени! Дэйнз (Danes, 1966, c.A127) пишет: "Если бы вязкость лунных скал была около 1021 - 1022 пуаз, возраст больших кратеров достигал бы всего от 104 до 107 лет". Предположение, будто лунные породы могли иметь вязкость более 1023, звучит нелепо; таким образом, становится совершенно очевидно, что Луне никак не может быть 4,6 миллиарда "эволюционных" лет.
Для подтверждения эволюционной хронологии "старой" Луны проводились радиометрические исследования лунных пород. Однако их результаты в лучшем случае двусмысленны. Например, как минимум два различных исследования определили возраст Луны как 7 миллиардов и 20 миллиардов лет соответственно; оба значения бесконечно больше, чем предполагали сами эволюционисты! Были зафиксированы и другие аномальные результаты (см. таблицу 2). Дрисколл (Driscoll, 1972, с.12) пишет: "Если бы все методы датирования (рубидиево-стронциевый, урано-свинцовый, калиево-аргоновый) давали один и тот же результат, картина была бы ясна. Но дело обстоит иначе. Например, применение свинца показывает несравнимо больший возраст". Кадоган, говоря о лунных скоплениях скальных пород, которые считаются очень старыми - ровесниками самой Луны, признает, что разброс в датах при измерении их возраста может достигать 100 миллионов лет!
Неточности в данных особенно заметны, если учитывать все те факторы, которые могли сыграть свою роль в истории пород (например, миграция элементов). Райт ( Wright, 1972, с.20) пишет: "Целый ряд вычислений возраста лунных пород базируется на соотношении рубидия и стронция. Необходимо отметить, что при температуре и давлении, зафиксированных на поверхности Луны, неизбежна неравноценная миграция двух этих элементов... Паровая миграция - это механизм, который может поставить под сомнение метод датирования по соотношению элементов - по крайней мере, в тех случаях, когда задействуются пары элементов с очень разной летучестью". Дрисколл (Driscoll, 1972, с.13) говорит: "Эти находки столько же сообщают ученым о лунных процессах и поведении летучих веществ в вакууме, сколько и о возрасте Луны".
Методы радиометрического датирования не раз подвергали жесткой критике Слашер ( Slusher, 1981), Арндтс (Arndts et al, 1983) и Вудморап (Woodmorappe, 1979).
Мы знаем, что Луна постоянно удаляется от Земли со скоростью 3.8 см/год. Следовательно, её полная энергия возрастает. Пускай, в начале года средний радиус орбиты Луны был равен r, а через год он будет равен r+dr. Тогда в начале года:
а в конце года:
Энергия Луны за год возрастает на
dE = E2 - E1 = - GMm / 2 / (r+dr) + GMm / (2r) = GMm / 2 (-1/(r+dr) + 1/r) = GMm * dr / 2 / r2.
dE = 3.77E+18 Дж.
Тогда, разделив это приращение энергии на время в секундах, мы получим мощность, которую затрачивает нечто на постоянное удаление Луны от Земли
PHubbleMoon = dE / t
PHubbleMoon = 1.19*1011 Вт.
Возьмем отношение PHubbleMoon к PMoon. и получим коэффициент kHubbleMoon.
kHubbleMoon = 0.66
То есть, вакуум затрачивает мощность PMoon = G2Mm2/(r3c)/n2, которая распределяется на мощность подъема орбиты Луны PHubbleMoon = GMm*dr/2/r2/t, и на преодоление радиационно-приливного трения Луны: PTideMoon = PMoon - PHubbleMoon. Последняя мощность идет на разогрев самой Луны.
Итак, Луна получает ежесекундно 1.8109*1011 Вт, при этом 1.19*1011 Вт идет на подъем орбиты Луны, а 0.62*1011 Вт идут на разогрев Луны.
Остальная мощность в паре Земля-Луна расходуется на больший объект пары, то есть, на Землю:
PEarth = 2PLaplas - PMoon = 2G2Mm2/(r3c) - G2Mm2/(r3c)/n2 = G2Mm2/(r3c) * (2 - 1/n2).
PEarth = G2Mm2/(r3c) * (2 - 1/n2) = 1.6871*1016 Вт.
Эта мощность лишь в 20 раз меньше мощности получаемой Землей от Солнца. Куда же она идет? Рост энергии на удаление от центра масс Земля-Луна? Вычислим эту мощность, пользуясь соотношением
(1/n2)kHubbleMoon / (2 -1/n2)kHubbleEarth = m/M.
PHubbleEearth = (2 -1/n2)kHubbleEarth = (1/n2)kHubbleMoon M/m = 1.19*1011 Вт * 5.9736*1024кг/0.07349*1024кг = 9.70*1012 Вт.
То есть, для Земли лишь 9.70*1012 Вт идет на удаление от центра масс, а основная энергия идет на приливное трение, то есть, на нагрев: 1.6871*1016 Вт - 9.70*1012 Вт = 1.6861*1016 Вт. Более точную картину дает учет вращения Земли вокруг собственной оси. Оценочный расчет показал, что при этом Луна получит добавку к Хаббловской скорости удаления от Земли, а сама Земля будет замедлять свое вращение из-за удаления от центра масс Земля- Луна. Хаббловское удаление дает dl = r*H*dt, или 2.883 см/год. Наблюдаемое удаление dr = 3.8 см/год. Отношение: dl/dr = 0,76. Это отношение сработает при учете торможения собственного вращения Земли. Но поскольку, выше мы получили, что в случае более массивного тела львиная доля мощности идет на приливное трение, а на удаление орбиты - на три порядка меньше, то учет торможения собственного вращения Земли не сильно повлияет на мощность, расходуемую на приливное трение, разогрев планеты.
Изо дня в день Луна меняет свой облик. Как известно, она не излучает собственного света, виден лишь отраженный солнечный. Поскольку Луна не стоит на месте, каждый раз мы видим ее освещенную сторону под разными углами. Новолуние. Когда Луна оказывается между Землей и Солнцем, Солнце освещает ту сторону Луны, которая повернута к нему. Нам же Луна не видна.
Растущая Луна. Через несколько дней мы видим часть освещенной стороны Луны -- серп, повернутый как дужка буквы Р (РАСТУЩИЙ). С каждым днем он увеличивается, постепенно превращается в полукруг, затем все больше приближается по виду к светлому кружку.
Полнолуние. Земля расположена между Солнцем и Луной. Луна повернута к нам лицом.
Убывающая Луна. Постепенно светящийся круг превращается в серп, только теперь он повернут, как буква С (СТАРЫЙ). Наконец, серп совсем исчезает и наступает новолуние.
Солнце, Луна и Земля в стадии новолуния и полнолуния редко лежат на одной линии, т.к. лунная орбита лежит не точно в плоскости эклиптики, а под наклоном к ней в 5 градусов.
Солнечные затмения. Солнце, Луна и Земля лежат на одной линии в стадии новолуния.Луна загораживает от нас Солнце.
Лунные затмения. Солнце, Луна и Земля лежат на одной линии в стадии полнолуния. Земля загораживает Луну от Солнца. Луна при этом становится кирпично-красной.
Каждый год в среднем происходит по 4 солнечных и лунных затмения. Они всегда сопровождают друг друга. Скажем, если новолуние совпадает с солнечным затмением, то лунное затмение наступает через две недели, в фазе полнолуния.
При растущей Луне в старину сеяли и сажали все, что растет на земле, при убывающей -- культуры, ценные клубнями и кореньями. Дровосеки старались рубить деревья на убывающей Луне. Все это объясняется тем, что Луна оказывает воздействие на циркуляцию жидкостей. Когда Луна растет, повышается содержание воды и сахара в дереве.
Как выяснилось в ходе медицинских исследований, при новолунии и полнолунии уменьшается выделение мочевой кислоты в человеческом организме. Прививки во время полнолуния имеют наименьшие виды на успех -- вероятно, вследствие того, что привитые вещества быстрее перерабатываются и выводятся. После операций, проведенных в полнолуние наблюдаются сильные кровотечения.
На растущей Луне хуже чувствуют себя больные коклюшем и аллергики, наблюдается повышенная чувствительность у страдающих легочными заболеваниями.
Есть мнение, что лунные ритмы связаны с цветным зрением человека.
У здоровых людей в полнолуние наблюдается повышенная возбудимость и работоспособность, часто бессонница и головная боль. Как утверждают некоторые источники, частота преступлений во время полнолуния подтверждена статистикой.
Приблизительно это можно сделать из прямых наблюдений, взяв данные о фазе Луны из обычного настенного календаря (при этом нужно иметь ввиду, что при новолунии Луна находится "перед" Солнцем, в первой четверти - в 90 градусах к востоку от Солнца, в полнолуние - в180 градусах и, наконец, в последней четверти - в 90 градусах к западу от Солнца).
Можно использовать подвижную карту звездного неба для приближенного определения положений Луны.
Однако, самый верный и точный способ определения положения Луны на небесной сфере, использование астрономических программ-планетариев на персональном компьютере. С помощью таких программ можно определять положение не только Луны и Солнца, но планет, комет и астероидов и даже искусственных спутников Земли.
Чтобы было понятнее, каким образом происходит движение Луны по небесной сфере, проследим ее путь от новолуния до следующего новолуния.
Наблюдаемая скорость движения Луны среди звезд выше, чем скорость аналогичного перемещения Солнца. За сутки Луна проходит угловое расстояние, равное 13°,2, т. е. каждый час она смещается на величину собственного углового диаметра (на 30'). Солнце среди звезд движется гораздо медленнее - всего 1° за сутки.
Продолжительность цикла смены фаз составляет 29,5 суток - синодический месяц.
В течение каждого месяца Луна, двигаясь среди звезд в ту же сторону, что и Солнце, догоняет наше светило и перегоняет его. Момент, когда астрономические долготы Луны и Солнца уравниваются, соответствует фазе новолуния, принимаемой за условное начало фазового цикла Луны. Формально период видимости фазы новолуния приходится на дневное время суток. Очевидно также, что практически наблюдать эту фазу не удается.
После того как Луна проходит положение наибольшего сближения с Солнцем, узкий светлый серп начинает увеличиваться.
В фазе тонкого серпа Луна появляется вскоре после захода Солнца и заходит вблизи точки заката. Выпуклая сторона серпа Луны, обращенная в сторону Солнца, носит название лимба-освещенного края видимого диска Луны. Вогнутая сторона серпа представляет собой границу тени на поверхности лунного шара и носит название терминатора. Луна в фазах, следующих непосредственно за новолунием, носит название молодой или растущей Лупы.
Концы серпа в пересечении терминатора с лимбом называются рогами, а диаметр видимого диска, который проходит через эти точки,- линией рогов.
В астрономической литературе часто можно встретить выражение "возраст Луны", которое обозначает промежуток времени, прошедший с момента последнего новолуния.
Молодая, или растущая, Луна сравнительно недолго остается над горизонтом и заходит вскоре после заката Солнца. В разное время года Луна в этой фазе проходит свой суточный путь по-разному. Наибольшей высоты над горизонтом она достигает в летнее время. В другие сезоны молодая Луна поднимается сравнительно невысоко над горизонтом и поэтому условия ее наблюдения неблагоприятны. Примерно через - неделю после новолуния диск Луны выглядит освещенным уже наполовину. Эта фаза носит название первой четверти. Особенностью фазы первой четверти является совпадение терминатора с линией рогов. Разность долгот Луны и Солнца составляет ровно 90°. В этой фазе Луна более продолжительное время наблюдаемся над горизонтом в первую половину ночи. Наиболее благоприятный для наблюдений сезон приходится на весну.
В возрасте от 8 до 13 суток лунный диск находится в стадии прибывающей (или нарастающей) Луны, Освещенная часть диска увеличивается и в конце второй недели после новолуния Луну можно видеть полностью освещенной. Эта фаза называется полнолунием. Яркость Луны бывает наибольшей, и она видна почти всю ночь, исключая предрассветные часы. Наиболее благоприятным для наблюдений сезоном является конец зимы - начало весны.
Во время полнолуния Луна находится почти прямо против Солнца, поэтому она восходит при солнечном закате, а заходит в момент восхода Солнца.
В первую неделю после полнолуния лунный диск находится в фазе убывающей (на ущербе) Луны. Освещенная часть диска постепенно уменьшается. В этот период на фоне звезд Луна опять начинает сближаться с Солнцем, подходя к нему с противоположной стороны. Период видимости приходится на большую часть ночи, кроме вечерних часов, а наиболее благоприятное для наблюдений время - конец осени и начало зимы.
В конце недели после полнолуния диск Луны остается освещенным лишь наполовину, наступает фаза последней четверти. В последней четверти Луна наблюдается в утреннюю половину ночи. Наибольшую высоту над горизонтом Луна в этой фазе имеет осенью.
Прослеживая далее динамику смены фаз Луны, увидим, что освещенный полудиск начнет превращаться в постепенно суживающийся серп. Наступит фаза старой Луны. Время наблюдения сместится на предрассветные часы, а наиболее благоприятный сезон для наблюдений - конец лета и начало осени. В период старой Луны время ее восхода постепенно приближается к времени солнечного восхода и, наконец, лунный диск становится невидимым. Цикл смены фаз завершился. Через два-три дня в вечерние часы сразу после захода Солнца на небе появляется узкий серп новой луны и весь цикл начинается снова.
Почему Луна не падает на Землю
Луна, естественный спутник Земли, в процессе своего движения в пространстве испытывает влияние главным образом двух тел - Земли и Солнца. При этом солнечное притяжение в два раза сильнее земного. Поэтому оба тела (Земля и Луна) вращаются вокруг Солнца, находясь поблизости друг от друга.
При двукратном преобладании солнечного притяжения над земным кривая движения Луны должна быть вогнутой по отношению к Солнцу во всех своих точках. Влияние близкой Земли, существенно превышающей по массе Луну, приводит к тому, что величина кривизны лунной гелиоцентрической орбиты периодически меняется.
Схема перемещения Земли и Луны в пространстве и изменение их взаимного положения по отношению к Солнцу показаны на схеме.
Обращаясь вокруг Земли Луна движется по орбите со скоростью 1 км/сек, т.е достаточно медленно чтобы не покинуть свою орбиту и "улететь" в космос, но и достаточно быстро, чтобы не упасть на Землю. Прямо отвечая автору вопроса, можно сказать, что Луна упадет на Землю только в том случае, если не будет двигаться по орбите, т.е. если внешние силы (некая космическая рука) остановят Луну в ее движении по орбите, то она естественным образом упадет на Землю. Однако при этом выделится столько энергии, что говорить о падении Луны на Землю, как твердого тела не приходится.
Для наглядности модель перемещения Луны в пространстве упрощают. При этом мы не потеряем математической и небесно-механической строгости, если, взяв за основу более простой вариант, не забудем учесть влияние многочисленных возмущающих движение факторов.
Предположив Землю неподвижной, можно представить Луну спутником нашей планеты, движение которого подчиняется законам Кеплера и происходит по эллиптической' орбите. Согласно подобной схеме среднее значение эксцентриситета лунной орбиты составляет е = 0,055. Большая полуось этого эллипса равна по величине среднему расстоянию, т. е. 384 400 км. В апогее при наибольшем удалении это расстояние увеличивается до 405 500 км, а в перигее (при наименьшем удалении) составляет 363300 км- Плоскость лунной орбиты наклонена к плоскости эклиптики на некоторый угол.
Выше приведена схема, поясняющая геометрический смысл элементов орбиты Луны.
Элементы орбиты Луны описывают среднее, невозмущенное движение Луны,
Однако влияние Солнца и планет приводит к тому, что орбита Луны изменяет свое положение в пространстве. Линия узлов движется в плоскости эклиптики в направлении, обратном движению Луны по орбите. Следовательно, значение долготы восходящего узла непрерывно меняется. Полный оборот линия узлов совершает за 18,6 года.
2i.SU ©® 2015